• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Supply chain risk management and artificial intelligence: state of the art and future research directions

    Author(s)
    Baryannis, George
    Validi, Sahar
    Dani, Samir
    Antoniou, Grigoris
    Griffith University Author(s)
    Antoniou, Grigorios
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Supply chain risk management (SCRM) encompasses a wide variety of strategies aiming to identify, assess, mitigate and monitor unexpected events or conditions which might have an impact, mostly adverse, on any part of a supply chain. SCRM strategies often depend on rapid and adaptive decision-making based on potentially large, multidimensional data sources. These characteristics make SCRM a suitable application area for artificial intelligence (AI) techniques. The aim of this paper is to provide a comprehensive review of supply chain literature that addresses problems relevant to SCRM using approaches that fall within the AI ...
    View more >
    Supply chain risk management (SCRM) encompasses a wide variety of strategies aiming to identify, assess, mitigate and monitor unexpected events or conditions which might have an impact, mostly adverse, on any part of a supply chain. SCRM strategies often depend on rapid and adaptive decision-making based on potentially large, multidimensional data sources. These characteristics make SCRM a suitable application area for artificial intelligence (AI) techniques. The aim of this paper is to provide a comprehensive review of supply chain literature that addresses problems relevant to SCRM using approaches that fall within the AI spectrum. To that end, an investigation is conducted on the various definitions and classifications of supply chain risk and related notions such as uncertainty. Then, a mapping study is performed to categorise existing literature according to the AI methodology used, ranging from mathematical programming to Machine Learning and Big Data Analytics, and the specific SCRM task they address (identification, assessment or response). Finally, a comprehensive analysis of each category is provided to identify missing aspects and unexplored areas and propose directions for future research at the confluence of SCRM and AI.
    View less >
    Journal Title
    International Journal of Production Research
    Volume
    57
    Issue
    7
    DOI
    https://doi.org/10.1080/00207543.2018.1530476
    Subject
    Information and computing sciences
    Publication URI
    http://hdl.handle.net/10072/386407
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander