• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light

    Author(s)
    Wu, Zhiqing
    Ambrožová, Nela
    Eftekhari, Ehsan
    Aravindakshan, Nikhil
    Wang, Wentai
    Wang, Qilin
    Zhang, Shanqing
    Kočí, Kamila
    Li, Qin
    Griffith University Author(s)
    Li, Qin
    Zhang, Shanqing
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    We report for the first time the nitrogen doping of reduced graphene oxide (rGO) and TiO2 nanowires (NWs) when TiO2 NWs intercalated rGO membranes were immersed in ammonia aqueous solution under 8 W 254 nm UV irradiation. Such nitrogen-doped rGO/TiO2 NWs photocatalytic membrane produced H2 at a rate of 208 μmol h−1 g−1 under 8 W 254 nm UV irradiation, which is more than 14 times higher than the yield of the TiO2-P25 and 30-fold higher than TiO2 NWs alone under the same condition. Our study demonstrates a new synthesis route for doping nitrogen in rGO and TiO2, as well as the preliminary feasibility of hydrogen extraction ...
    View more >
    We report for the first time the nitrogen doping of reduced graphene oxide (rGO) and TiO2 nanowires (NWs) when TiO2 NWs intercalated rGO membranes were immersed in ammonia aqueous solution under 8 W 254 nm UV irradiation. Such nitrogen-doped rGO/TiO2 NWs photocatalytic membrane produced H2 at a rate of 208 μmol h−1 g−1 under 8 W 254 nm UV irradiation, which is more than 14 times higher than the yield of the TiO2-P25 and 30-fold higher than TiO2 NWs alone under the same condition. Our study demonstrates a new synthesis route for doping nitrogen in rGO and TiO2, as well as the preliminary feasibility of hydrogen extraction from ammonia-containing wastewater with such a low-cost recyclable photocatalyst. In addition, the study illustrates the complexity of photocatalysis of ammonia aqueous solution, which involves multiple reactions in concurrence.
    View less >
    Journal Title
    Emergent Materials
    DOI
    https://doi.org/10.1007/s42247-019-00029-5
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/386451
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander