• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study

    Author(s)
    Aberoumand, Sadegh
    Ghamari, Shahin
    Shabani, Bahman
    Griffith University Author(s)
    Aberoumand, Sadegh
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This paper aims to investigate the electrical, thermal and exergy efficiencies of a photovoltaic/ thermal (PV/T) system cooled by Ag/water nanofluid. The utilized nanofluid was prepared by a one-step method of electrical explosion of wire (EEW) and was tested for long-term stability and uniformity. The performance of the PV/T system was measured by considering a wide range of parameters to determine key performance indicators such as electrical and thermal energy efficiency as well as exergy efficiency of the system. The effects of mass flow (i.e. different flow regimes of laminar, transient, and turbulent) on efficiencies ...
    View more >
    This paper aims to investigate the electrical, thermal and exergy efficiencies of a photovoltaic/ thermal (PV/T) system cooled by Ag/water nanofluid. The utilized nanofluid was prepared by a one-step method of electrical explosion of wire (EEW) and was tested for long-term stability and uniformity. The performance of the PV/T system was measured by considering a wide range of parameters to determine key performance indicators such as electrical and thermal energy efficiency as well as exergy efficiency of the system. The effects of mass flow (i.e. different flow regimes of laminar, transient, and turbulent) on efficiencies were studied. The results showed that using nanofluids for cooling of the PV/T system can enhance both the energy and exergy efficiencies of the system significantly. It was also found that this positive impact is more pronounced by increasing the concentration of the nanofluid and increasing the flow rate (i.e. moving towards a turbulent flow). By using 4 wt% nanofluid (with turbulent flow) the power output of the panel increased by ∼35% and ∼10% compared to when no cooling and water cooling were applied respectively; and the exergy efficiency was also determined to be 50% and 30% higher than when no cooling and water cooling were used, respectively.
    View less >
    Journal Title
    Solar Energy
    Volume
    165
    DOI
    https://doi.org/10.1016/j.solener.2018.03.028
    Subject
    Engineering
    Built Environment and Design
    Publication URI
    http://hdl.handle.net/10072/386463
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander