• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • In-situ fluorescence monitoring of cyanobacteria: Laboratory-based quantification of species-specific measurement accuracy

    Thumbnail
    View/Open
    Embargoed until: 2021-06-25
    Author(s)
    Bertone, Edoardo
    Chuang, Ann
    Burford, Michele A
    Hamilton, David P
    Griffith University Author(s)
    Burford, Michele A.
    Bertone, Edoardo
    Chuang, Ann W.
    Hamilton, David P.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    In recent years, in-situ fluorometers have been extensively deployed to monitor cyanobacteria in near real-time. Acceptable accuracy can be achieved between measured pigments and cyanobacteria biovolume provided the cyanobacteria species are known. However, cellular photosynthetic pigment content and measurement interferences are site and species specific and can dramatically affect sensor reliability. We quantified the accuracy of an in-situ fluorometer compared with traditional methods using mono- and mixed cultures of four different cyanobacterial species. We found: (1) lower pigment content in cultures in stationary ...
    View more >
    In recent years, in-situ fluorometers have been extensively deployed to monitor cyanobacteria in near real-time. Acceptable accuracy can be achieved between measured pigments and cyanobacteria biovolume provided the cyanobacteria species are known. However, cellular photosynthetic pigment content and measurement interferences are site and species specific and can dramatically affect sensor reliability. We quantified the accuracy of an in-situ fluorometer compared with traditional methods using mono- and mixed cultures of four different cyanobacterial species. We found: (1) lower pigment content in cultures in stationary phase, (2) higher precision with the sensor compared to traditional pigment quantification methods of measuring phycocyanin and chlorophyll a, (3) species-specific relationships between sensor readings and measurements related to biovolume, (4) overestimation of pigments in mixed compared with mono cultures, (5) dissolved organic matter causing a loss in signal proportional to its degree of aromaticity, and (6) potential to quantify the degree of cell lysis with a fluorescent dissolved organic matter sensor. This study has provided important new information on the strengths and limitations of fluorescence sensors. The sensor readings can provide accurate biovolume quantification and species determination for a number of bloom-forming species when sensors are properly compensated and calibrated.
    View less >
    Journal Title
    Harmful Algae
    Volume
    87
    DOI
    https://doi.org/10.1016/j.hal.2019.101625
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/386477
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander