• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design and implementation of a hierarchical hybrid communication platform for multi-microgrid applications

    Author(s)
    Jamborsalamati, P
    Moghimi, M
    Hossain, J
    Lu, J
    Griffith University Author(s)
    Lu, Junwei
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    This paper presents a hierarchical hybrid communication platform for Multi-Microgrid (MMG) optimization applications. The main purpose of the implemented platform is to attach multiple Microgrids (MGs) to each other by adding an Internet of Things (IoT) gateway to each MG. This enables bi-directional data exchange among the MGs through the IoT gateway for optimal operation of the MGs with respect to each other. Considering the scale of the data acquisition in MMG optimization problems, utilization of a cloud-based platform for extensive data sharing and post-processing of the aggregated data is vital. The proposed platform ...
    View more >
    This paper presents a hierarchical hybrid communication platform for Multi-Microgrid (MMG) optimization applications. The main purpose of the implemented platform is to attach multiple Microgrids (MGs) to each other by adding an Internet of Things (IoT) gateway to each MG. This enables bi-directional data exchange among the MGs through the IoT gateway for optimal operation of the MGs with respect to each other. Considering the scale of the data acquisition in MMG optimization problems, utilization of a cloud-based platform for extensive data sharing and post-processing of the aggregated data is vital. The proposed platform has adopted Modbus protocol for communications between the devices inside each MG, local controllers, and the MG Central Controller (MGCC). The Message Queue Telemetry Transport (MQTT) protocol is used for data sharing among the MGCCs and HTTP requests for interactions with a cloud server in a hybrid platform. The cloud server has an interface to MATLAB and the hierarchical architecture is implemented in a co-simulation platform with Python and MATLAB. Results show the efficacy of the implemented platform for MMG optimization applications.
    View less >
    Conference Title
    Smart Innovation, Systems and Technologies
    Volume
    131
    DOI
    https://doi.org/10.1007/978-3-030-04293-6_20
    Subject
    Electrical engineering
    Electronics, sensors and digital hardware
    Publication URI
    http://hdl.handle.net/10072/386482
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander