• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Multifunctional Wearable Device with a Graphene/Silver Nanowire Nanocomposite for Highly Sensitive Strain Sensing and Drug Delivery

    Thumbnail
    View/Open
    Zhong238050.pdf (873.8Kb)
    Author(s)
    Shi, Ge
    Liu, Tianqing
    Kopecki, Zlatko
    Cowin, Allison
    Lee, Ivan
    Pai, Jing-Hong
    Lowe, Sean E
    Zhong, Yu Lin
    Griffith University Author(s)
    Zhong, Yulin
    Lowe, Sean
    Shi, Ge
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Advances in wearable, highly sensitive and multifunctional strain sensors open up new opportunities for the development of wearable human interface devices for various applications such as health monitoring, smart robotics and wearable therapy. Herein, we present a simple and cost-effective method to fabricate a multifunctional strain sensor consisting of a skin-mountable dry adhesive substrate, a robust sensing component and a transdermal drug delivery system. The sensor has high piezoresisitivity to monitor real-time signals from finger bending to ulnar pulse. A transdermal drug delivery system consisting of polylactic-co-glycolic ...
    View more >
    Advances in wearable, highly sensitive and multifunctional strain sensors open up new opportunities for the development of wearable human interface devices for various applications such as health monitoring, smart robotics and wearable therapy. Herein, we present a simple and cost-effective method to fabricate a multifunctional strain sensor consisting of a skin-mountable dry adhesive substrate, a robust sensing component and a transdermal drug delivery system. The sensor has high piezoresisitivity to monitor real-time signals from finger bending to ulnar pulse. A transdermal drug delivery system consisting of polylactic-co-glycolic acid nanoparticles and a chitosan matrix is integrated into the sensor and is able to release the nanoparticles into the stratum corneum at a depth of ~60 µm. Our approach to the design of multifunctional strain sensors will lead to the development of cost-effective and well-integrated multifunctional wearable devices.
    View less >
    Journal Title
    C
    Volume
    5
    Issue
    2
    DOI
    https://doi.org/10.3390/c5020017
    Copyright Statement
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
    Subject
    Environmental Sciences
    Publication URI
    http://hdl.handle.net/10072/386605
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander