• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Truth finding by reliability estimation on inconsistent entities for heterogeneous data sets

    Thumbnail
    View/Open
    TianPUB234160.pdf (464.3Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Tian, Hui
    Sheng, Wenwen
    Shen, Hong
    Wang, Can
    Griffith University Author(s)
    Wang, Can
    Tian, Hui
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    An important task in big data integration is to derive accurate data records from noisy and conflicting values collected from multiple sources. Most existing truth finding methods assume that the reliability is consistent on the whole data set, ignoring the fact that different attributes, objects and object groups may have different reliabilities even wrt the same source. These reliability differences are caused by the hardness differences in obtaining attribute values, non-uniform updates to objects and the differences in group privileges. This paper addresses the problem how to compute truths by effectively estimating the ...
    View more >
    An important task in big data integration is to derive accurate data records from noisy and conflicting values collected from multiple sources. Most existing truth finding methods assume that the reliability is consistent on the whole data set, ignoring the fact that different attributes, objects and object groups may have different reliabilities even wrt the same source. These reliability differences are caused by the hardness differences in obtaining attribute values, non-uniform updates to objects and the differences in group privileges. This paper addresses the problem how to compute truths by effectively estimating the reliabilities of attributes, objects and object groups in a multi-source heterogeneous data environment. We first propose an optimization framework TFAR, its implementation and Lagrangian duality solution for Truth Finding by Attribute Reliability estimation. We then present a Bayesian probabilistic graphical model TFOR and an inference algorithm applying Collapsed Gibbs Sampling for Truth Finding by Object Reliability estimation. Finally we give an optimization framework TFGR and its implementation for Truth Finding by Group Reliability estimation. All these models lead to a more accurate estimation of the respective attribute, object and object group reliabilities, which in turn can achieve a better accuracy in inferring the truths. Experimental results on both real data and synthetic data show that our methods have better performance than the state-of-art truth discovery methods.
    View less >
    Journal Title
    Knowledge-Based Systems
    DOI
    https://doi.org/10.1016/j.knosys.2019.06.036
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Psychology
    Publication URI
    http://hdl.handle.net/10072/386702
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander