• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • 2D boron dichalcogenides from the substitution of Mo with ionic B-2 pair in MoX2 (X = S, Se and Te): high stability, large excitonic effect and high charge carrier mobility

    Author(s)
    Tang, Cheng
    Ma, Fengxian
    Zhang, Chunmei
    Jiao, Yalong
    Matta, Sri Kasi
    Ostrikov, Ken
    Du, Aijun
    Griffith University Author(s)
    Ostrikov, Kostya (Ken)
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Two-dimensional (2D) transition metal dichalcogenides are regarded as promising candidates for nanoelectronic devices, due to their novel electronic properties. Motivated by the similarity of valence electrons between Mo and B2 pairs, we design a new type of 2D MoS2-like material, i.e. boron dichalcogenides, through the global minimization search and density functional theory methods. Free standing trigonal and hexagonal phase boron dichalcogenide (B2X2, X = S, Se and Te) monolayers are predicted to be highly stable. The T-B2X2 and H-B2X2 monolayers are all semiconducting with indirect bandgaps ranging from 2.14 eV to 4.01 ...
    View more >
    Two-dimensional (2D) transition metal dichalcogenides are regarded as promising candidates for nanoelectronic devices, due to their novel electronic properties. Motivated by the similarity of valence electrons between Mo and B2 pairs, we design a new type of 2D MoS2-like material, i.e. boron dichalcogenides, through the global minimization search and density functional theory methods. Free standing trigonal and hexagonal phase boron dichalcogenide (B2X2, X = S, Se and Te) monolayers are predicted to be highly stable. The T-B2X2 and H-B2X2 monolayers are all semiconducting with indirect bandgaps ranging from 2.14 eV to 4.01 eV and large excitonic effects. Particularly, H-B2X2 exhibits high carrier mobility of up to 6.23 × 105 cm2 (V−1 s−1), which can be comparable to that of graphene. Therefore, 2D boron dichalcogenides have great potential for applications in high-performance flexible field-effect transistors and light emitters. Furthermore, the optical spectrum of these monolayers reveals that the absorption is in the ultraviolet region, suggesting future applications in ultraviolet optoelectronic devices.
    View less >
    Journal Title
    Journal of Materials Chemistry C
    Volume
    7
    Issue
    6
    DOI
    https://doi.org/10.1039/c8tc05408h
    Subject
    Macromolecular and Materials Chemistry
    Physical Chemistry (incl. Structural)
    Materials Engineering
    Science & Technology
    Technology
    Physical Sciences
    Materials Science, Multidisciplinary
    Physics, Applied
    Publication URI
    http://hdl.handle.net/10072/386723
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander