• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A hierarchical hybrid monolith: MoS42--intercalated NiFe layered double hydroxide nanosheet arrays assembled on carbon foam for highly efficient heavy metal removal

    Author(s)
    Wang, Yongchuang
    Gu, Yue
    Xie, Donghua
    Qin, Wenxiu
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Zhang, Haimin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Increasing exposure to heavy metals has stimulated extensive research for designing adsorbents with collective features of high removal efficiency and strong binding affinity to target ions as well as simple and facile separation. Herein, NiFe-layered double hydroxide (LDH) nanosheets have been homogeneously immobilized on a carbon foam (CF) substrate, followed by subsequent intercalation of MoS42− ions into the interlayers, giving rise to a hierarchical porous hybrid monolith (abbreviated as NiFe–MoS42−-LDH/CF). By virtue of abundant binding sites, strong affinity and excellent pore accessibility, the developed NiFe–MoS42−-LDH/CF ...
    View more >
    Increasing exposure to heavy metals has stimulated extensive research for designing adsorbents with collective features of high removal efficiency and strong binding affinity to target ions as well as simple and facile separation. Herein, NiFe-layered double hydroxide (LDH) nanosheets have been homogeneously immobilized on a carbon foam (CF) substrate, followed by subsequent intercalation of MoS42− ions into the interlayers, giving rise to a hierarchical porous hybrid monolith (abbreviated as NiFe–MoS42−-LDH/CF). By virtue of abundant binding sites, strong affinity and excellent pore accessibility, the developed NiFe–MoS42−-LDH/CF hybrid monolith is found to be highly effective for the sequestration of Hg2+, Pb2+, and Cu2+, exhibiting ultrahigh sorption capacities of 462, 299, and 128 mg g−1, respectively, and outperforms most of the reported sorbents. Meanwhile, the uptake kinetics of these metal ions are extremely fast, as reflected by >99% removal rates within 5 min. More significantly, the developed adsorbent possesses superior selectivity for the target heavy metals with high distribution coefficients in the presence of various interfering ions. Remarkably, the resulting NiFe–MoS42−-LDH/CF hybrid monolith can be utilized as a flow-through filter unit and continuously treat larger volumes of simulated wastewater to below the permitted level for drinking water as compared to a NiFe–MoS42−-LDH powder under identical dynamic conditions, highlighting its feasibility for practical water purification.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    7
    Issue
    20
    DOI
    https://doi.org/10.1039/c9ta03102b
    Subject
    Macromolecular and Materials Chemistry
    Materials Engineering
    Interdisciplinary Engineering
    Science & Technology
    Physical Sciences
    Technology
    Chemistry, Physical
    Energy & Fuels
    Publication URI
    http://hdl.handle.net/10072/386780
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander