NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions

View/ Open
Embargoed until: 2021-01-30
Author(s)
Zhang, Wei
Li, Daohao
Zhang, Longzhou
She, Xilin
Yang, Dongjiang
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Water splitting, as an advanced energy conversion technology, consists of two half reactions, including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the ideal electrocatalysts are noble metal based catalysts. Their high cost and scarcity in earth seriously restrict the large deployments. NiFe-based materials have attracted great attention in recent years due to their excellent catalytic properties for OER and HER. Nevertheless, their conductivity and electrochemical stability at high current density are unsatisfactory, resulting in ineffective water splitting due to high impedance and low ...
View more >Water splitting, as an advanced energy conversion technology, consists of two half reactions, including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the ideal electrocatalysts are noble metal based catalysts. Their high cost and scarcity in earth seriously restrict the large deployments. NiFe-based materials have attracted great attention in recent years due to their excellent catalytic properties for OER and HER. Nevertheless, their conductivity and electrochemical stability at high current density are unsatisfactory, resulting in ineffective water splitting due to high impedance and low stability. Recently, a series of catalysts coating NiFe-based materials on 3D nickel foam were found to be extremely stable under the circumstance of high current density. In this review, we summarized the recent advances of NiFe-based materials on nickel foam for OER and HER, respectively, and further provided the perspectives for their future development.
View less >
View more >Water splitting, as an advanced energy conversion technology, consists of two half reactions, including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the ideal electrocatalysts are noble metal based catalysts. Their high cost and scarcity in earth seriously restrict the large deployments. NiFe-based materials have attracted great attention in recent years due to their excellent catalytic properties for OER and HER. Nevertheless, their conductivity and electrochemical stability at high current density are unsatisfactory, resulting in ineffective water splitting due to high impedance and low stability. Recently, a series of catalysts coating NiFe-based materials on 3D nickel foam were found to be extremely stable under the circumstance of high current density. In this review, we summarized the recent advances of NiFe-based materials on nickel foam for OER and HER, respectively, and further provided the perspectives for their future development.
View less >
Journal Title
Journal of Energy Chemistry
Volume
39
Copyright Statement
© 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Organic Chemistry