Ultrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage

View/ Open
Author(s)
Lv, Chunxiao
Liu, Hongli
Li, Daohao
Chen, Shuai
Zhang, Huawei
She, Xilin
Guo, Xiangxin
Yang, Dongjiang
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
The key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. This study reports the synthesis of a composite of ultrafine FeSe nanoparticles (NPs) and carbon nanofiber aerogel (CNFA) as anode material for SIBs. The composite features ultra-small (∼5 nm) NPs of FeSe uniformly embedded in interconnect three dimensional (3D) carbon nanofiber with large surface area, highly conductive network, and robust structural stability. As expected, the FeSe-CNFA-700 sample delivers a capacity as high as ∼313 mA h g−1 at 2000 mA g−1 ...
View more >The key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. This study reports the synthesis of a composite of ultrafine FeSe nanoparticles (NPs) and carbon nanofiber aerogel (CNFA) as anode material for SIBs. The composite features ultra-small (∼5 nm) NPs of FeSe uniformly embedded in interconnect three dimensional (3D) carbon nanofiber with large surface area, highly conductive network, and robust structural stability. As expected, the FeSe-CNFA-700 sample delivers a capacity as high as ∼313 mA h g−1 at 2000 mA g−1 after 1000 cycles and ultrahigh rate capability up to 20000 mA g−1. The significantly improved electrochemical performance could be attributed to the unique structure that combines a variety of advantages: easy access of electrolyte to the 3D network structure, pseudocapacitve charge storage and fast Na ion diffusion processes. The results confirm the intercalation of Na+ into the 3D ultrafine FeSe nanoparticles/carbon nanofiber aerogel is enhanced through the strong interaction between FeSe nanocrystals and the carbon layer. The density functional theory calculations demonstrate that the unique FeSe/carbon layer interface in 3D network structure can enhance Na storage due to the small energy barrier and negative adsorption energy.
View less >
View more >The key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. This study reports the synthesis of a composite of ultrafine FeSe nanoparticles (NPs) and carbon nanofiber aerogel (CNFA) as anode material for SIBs. The composite features ultra-small (∼5 nm) NPs of FeSe uniformly embedded in interconnect three dimensional (3D) carbon nanofiber with large surface area, highly conductive network, and robust structural stability. As expected, the FeSe-CNFA-700 sample delivers a capacity as high as ∼313 mA h g−1 at 2000 mA g−1 after 1000 cycles and ultrahigh rate capability up to 20000 mA g−1. The significantly improved electrochemical performance could be attributed to the unique structure that combines a variety of advantages: easy access of electrolyte to the 3D network structure, pseudocapacitve charge storage and fast Na ion diffusion processes. The results confirm the intercalation of Na+ into the 3D ultrafine FeSe nanoparticles/carbon nanofiber aerogel is enhanced through the strong interaction between FeSe nanocrystals and the carbon layer. The density functional theory calculations demonstrate that the unique FeSe/carbon layer interface in 3D network structure can enhance Na storage due to the small energy barrier and negative adsorption energy.
View less >
Journal Title
Carbon
Volume
143
Copyright Statement
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Physical Sciences
Chemical Sciences
Engineering
Science & Technology
Technology
Chemistry, Physical
Materials Science, Multidisciplinary