Show simple item record

dc.contributor.authorLv, Chunxiao
dc.contributor.authorLiu, Hongli
dc.contributor.authorLi, Daohao
dc.contributor.authorChen, Shuai
dc.contributor.authorZhang, Huawei
dc.contributor.authorShe, Xilin
dc.contributor.authorGuo, Xiangxin
dc.contributor.authorYang, Dongjiang
dc.date.accessioned2019-09-02T01:32:36Z
dc.date.available2019-09-02T01:32:36Z
dc.date.issued2019
dc.identifier.issn0008-6223
dc.identifier.doi10.1016/j.carbon.2018.10.091
dc.identifier.urihttp://hdl.handle.net/10072/386839
dc.description.abstractThe key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. This study reports the synthesis of a composite of ultrafine FeSe nanoparticles (NPs) and carbon nanofiber aerogel (CNFA) as anode material for SIBs. The composite features ultra-small (∼5 nm) NPs of FeSe uniformly embedded in interconnect three dimensional (3D) carbon nanofiber with large surface area, highly conductive network, and robust structural stability. As expected, the FeSe-CNFA-700 sample delivers a capacity as high as ∼313 mA h g−1 at 2000 mA g−1 after 1000 cycles and ultrahigh rate capability up to 20000 mA g−1. The significantly improved electrochemical performance could be attributed to the unique structure that combines a variety of advantages: easy access of electrolyte to the 3D network structure, pseudocapacitve charge storage and fast Na ion diffusion processes. The results confirm the intercalation of Na+ into the 3D ultrafine FeSe nanoparticles/carbon nanofiber aerogel is enhanced through the strong interaction between FeSe nanocrystals and the carbon layer. The density functional theory calculations demonstrate that the unique FeSe/carbon layer interface in 3D network structure can enhance Na storage due to the small energy barrier and negative adsorption energy.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofpagefrom106
dc.relation.ispartofpageto115
dc.relation.ispartofjournalCarbon
dc.relation.ispartofvolume143
dc.subject.fieldofresearchPhysical sciences
dc.subject.fieldofresearchChemical sciences
dc.subject.fieldofresearchEngineering
dc.subject.fieldofresearchcode51
dc.subject.fieldofresearchcode34
dc.subject.fieldofresearchcode40
dc.subject.keywordsScience & Technology
dc.subject.keywordsTechnology
dc.subject.keywordsChemistry, Physical
dc.subject.keywordsMaterials Science, Multidisciplinary
dc.titleUltrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationLv, C; Liu, H; Li, D; Chen, S; Zhang, H; She, X; Guo, X; Yang, D, Ultrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage, Carbon, 2019, 143, pp. 106-115
dcterms.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.date.updated2019-09-02T01:27:54Z
dc.description.versionAccepted Manuscript (AM)
gro.rights.copyright© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorYang, Dongjiang


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record