3D numerical model for fluid-seabed interactions around pipelines using OpenFOAM
Author(s)
Liang, ZD
Jeng, DS
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
A precise prediction of seabed stability involving the fluid-pipe-soil interaction can lead to significant cost reductions by optimising design. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures ...
View more >A precise prediction of seabed stability involving the fluid-pipe-soil interaction can lead to significant cost reductions by optimising design. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.
View less >
View more >A precise prediction of seabed stability involving the fluid-pipe-soil interaction can lead to significant cost reductions by optimising design. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.
View less >
Conference Title
Proceedings of the Thirteenth (2018) ISOPE Pacific-Asia Offshore Mechanics Symposium, PACOMS 2018
Publisher URI
Subject
Maritime engineering
Ocean engineering