A Constraint-Based Approach for the Conciliation of Clinical Guidelines
Author(s)
Piovesan, Luca
Terenziani, Paolo
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
The medical domain often arises new challenges to Artificial Intelligence. An emerging challenge is the support for the treatment of patients affected by multiple pathologies (comorbid patients). In the medical context, clinical practice guidelines (CPGs) are usually adopted to provide physicians with evidence-based recommendations, considering only single pathologies. To support physicians in the treatment of comorbid patients, suitable methodologies must be devised to “merge” CPGs. Techniques like replanning or scheduling, traditionally adopted in AI to “merge” plans, must be extended and adapted to fit the requirements ...
View more >The medical domain often arises new challenges to Artificial Intelligence. An emerging challenge is the support for the treatment of patients affected by multiple pathologies (comorbid patients). In the medical context, clinical practice guidelines (CPGs) are usually adopted to provide physicians with evidence-based recommendations, considering only single pathologies. To support physicians in the treatment of comorbid patients, suitable methodologies must be devised to “merge” CPGs. Techniques like replanning or scheduling, traditionally adopted in AI to “merge” plans, must be extended and adapted to fit the requirements of the medical domain. In this paper, we propose a novel methodology, that we term “conciliation”, to merge multiple CPGs, supporting the treatments of comorbid patients.
View less >
View more >The medical domain often arises new challenges to Artificial Intelligence. An emerging challenge is the support for the treatment of patients affected by multiple pathologies (comorbid patients). In the medical context, clinical practice guidelines (CPGs) are usually adopted to provide physicians with evidence-based recommendations, considering only single pathologies. To support physicians in the treatment of comorbid patients, suitable methodologies must be devised to “merge” CPGs. Techniques like replanning or scheduling, traditionally adopted in AI to “merge” plans, must be extended and adapted to fit the requirements of the medical domain. In this paper, we propose a novel methodology, that we term “conciliation”, to merge multiple CPGs, supporting the treatments of comorbid patients.
View less >
Conference Title
Advances in Artificial Intelligence - IBERAMIA 2016
Volume
10022
Subject
Artificial intelligence
Science & Technology
Technology
Computer Science, Artificial Intelligence
Computer Science
Computer interpretable clinical guidelines