• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Termites can decompose more than half of deadwood in tropical rainforest

    Thumbnail
    View/Open
    Ashton169366.pdf (153.3Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Griffiths, Hannah M
    Ashton, Louise A
    Evans, Theodore A
    Parr, Catherine L
    Eggleton, Paul
    Griffith University Author(s)
    Ashton, Louise A.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Globally, an estimated 73 ± 6 Pg of carbon is contained in deadwood, representing roughly 30 times the amount of carbon sequestered by forests annually [1]. Decomposition transfers this carbon to the soil, other organisms or the atmosphere [2], but it is not clear how different biological agents contribute to the decomposition process. Using a novel large-scale termite suppression experiment in old growth tropical forest, we quantify, for the first time, the relative contribution of microbes and termites to deadwood decomposition. Contrary to prevailing understanding, we demonstrate that termites can be responsible for the ...
    View more >
    Globally, an estimated 73 ± 6 Pg of carbon is contained in deadwood, representing roughly 30 times the amount of carbon sequestered by forests annually [1]. Decomposition transfers this carbon to the soil, other organisms or the atmosphere [2], but it is not clear how different biological agents contribute to the decomposition process. Using a novel large-scale termite suppression experiment in old growth tropical forest, we quantify, for the first time, the relative contribution of microbes and termites to deadwood decomposition. Contrary to prevailing understanding, we demonstrate that termites can be responsible for the majority of wood mass loss. Using a dead wood decomposition assay, we found termites were responsible for 58–64% of total mass loss, while microbes carried out 36–42%. Tropical forests are globally important for biodiversity and ecosystem service provision, yet climate change and habitat conversion [3] threaten the functioning of these forests with repercussions for the global biosphere [4]. Our study demonstrates that termite-mediated deadwood decay must be included in global carbon models. These findings will consequently help improve the accuracy of Earth-system models and climate forecasts in the face of global change.
    View less >
    Journal Title
    Current Biology
    Volume
    29
    Issue
    4
    DOI
    https://doi.org/10.1016/j.cub.2019.01.012
    Copyright Statement
    © The Author(s) 2019. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Psychology
    Science & Technology
    Life Sciences & Biomedicine
    Biochemistry & Molecular Biology
    Cell Biology
    WOOD DECOMPOSITION
    Publication URI
    http://hdl.handle.net/10072/387253
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander