• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries

    Author(s)
    Liu, H
    Liu, X
    Li, W
    Guo, X
    Wang, Y
    Wang, G
    Zhao, D
    Griffith University Author(s)
    Zhao, Dongyuan
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Rechargeable lithium batteries have attracted great attention as next generation power systems for electric vehicles (EVs). Lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries are all suitable to be the power systems for next generation EVs, but their power densities and cycling performance still need to be improved to match the requirements of practical EVs. Thus, rational design and controllable synthesis of electrode materials with unique microstructure and outstanding electrochemical performance are crucially desired. Porous carbon-based composites have many advantages for energy storage and ...
    View more >
    Rechargeable lithium batteries have attracted great attention as next generation power systems for electric vehicles (EVs). Lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries are all suitable to be the power systems for next generation EVs, but their power densities and cycling performance still need to be improved to match the requirements of practical EVs. Thus, rational design and controllable synthesis of electrode materials with unique microstructure and outstanding electrochemical performance are crucially desired. Porous carbon-based composites have many advantages for energy storage and conversion owing to their unique properties, including high electronic conductivity, high structural stability, high specific surface area, large pore volume for efficient electrolyte flux, and high reactive electrode materials with controllable size confined by porous carbon frameworks. Therefore, porous carbon composites exhibit excellent performance as electrode materials for lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. In this review, we summarize research progress on porous carbon composites with enhanced performance for rechargeable lithium batteries. We present the detailed synthesis, physical and chemical properties, and the innovation and significance of porous carbon composites for lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. Finally, we conclude the perspectives and critical challenges that need to be addressed for the commercialization of rechargeable lithium batteries.
    View less >
    Journal Title
    Advanced Energy Materials
    Volume
    7
    Issue
    24
    DOI
    https://doi.org/10.1002/aenm.201700283
    Subject
    Macromolecular and materials chemistry
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/387351
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander