Show simple item record

dc.contributor.authorLiu, H
dc.contributor.authorLiu, X
dc.contributor.authorLi, W
dc.contributor.authorGuo, X
dc.contributor.authorWang, Y
dc.contributor.authorWang, G
dc.contributor.authorZhao, D
dc.date.accessioned2019-09-16T06:04:49Z
dc.date.available2019-09-16T06:04:49Z
dc.date.issued2017
dc.identifier.issn1614-6832
dc.identifier.doi10.1002/aenm.201700283
dc.identifier.urihttp://hdl.handle.net/10072/387351
dc.description.abstractRechargeable lithium batteries have attracted great attention as next generation power systems for electric vehicles (EVs). Lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries are all suitable to be the power systems for next generation EVs, but their power densities and cycling performance still need to be improved to match the requirements of practical EVs. Thus, rational design and controllable synthesis of electrode materials with unique microstructure and outstanding electrochemical performance are crucially desired. Porous carbon-based composites have many advantages for energy storage and conversion owing to their unique properties, including high electronic conductivity, high structural stability, high specific surface area, large pore volume for efficient electrolyte flux, and high reactive electrode materials with controllable size confined by porous carbon frameworks. Therefore, porous carbon composites exhibit excellent performance as electrode materials for lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. In this review, we summarize research progress on porous carbon composites with enhanced performance for rechargeable lithium batteries. We present the detailed synthesis, physical and chemical properties, and the innovation and significance of porous carbon composites for lithium ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. Finally, we conclude the perspectives and critical challenges that need to be addressed for the commercialization of rechargeable lithium batteries.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofpagefrom1700283:1
dc.relation.ispartofpageto1700283:24
dc.relation.ispartofissue24
dc.relation.ispartofjournalAdvanced Energy Materials
dc.relation.ispartofvolume7
dc.subject.fieldofresearchMacromolecular and Materials Chemistry
dc.subject.fieldofresearchMaterials Engineering
dc.subject.fieldofresearchInterdisciplinary Engineering
dc.subject.fieldofresearchcode0303
dc.subject.fieldofresearchcode0912
dc.subject.fieldofresearchcode0915
dc.titlePorous Carbon Composites for Next Generation Rechargeable Lithium Batteries
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationLiu, H; Liu, X; Li, W; Guo, X; Wang, Y; Wang, G; Zhao, D, Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries, Advanced Energy Materials, 2017, 7 (24), pp. 1700283:1-1700283:24
dc.date.updated2019-09-16T06:03:36Z
gro.hasfulltextNo Full Text
gro.griffith.authorZhao, Dongyuan


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record