• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes

    Thumbnail
    View/Open
    Dimitrijev208315.pdf (1.144Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Nicholls, Jordan
    Dimitrijev, Sima
    Tanner, Philip
    Han, Jisheng
    Griffith University Author(s)
    Dimitrijev, Sima
    Tanner, Philip G.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Attempts to model the current through Schottky barrier diodes using the two fundamental mechanisms of thermionic emission and tunnelling are adversely impacted by defects and second order effects. This has led to the publication of countless different models to account for these effects, including some with non-physical parameters. Recently, we have developed silicon carbide Schottky barrier diodes that do not suffer from second order effects, such as excessive leakage, carrier generation and recombination, and non-uniform barrier height. In this paper, we derive the foundational current equations to establish clear links ...
    View more >
    Attempts to model the current through Schottky barrier diodes using the two fundamental mechanisms of thermionic emission and tunnelling are adversely impacted by defects and second order effects. This has led to the publication of countless different models to account for these effects, including some with non-physical parameters. Recently, we have developed silicon carbide Schottky barrier diodes that do not suffer from second order effects, such as excessive leakage, carrier generation and recombination, and non-uniform barrier height. In this paper, we derive the foundational current equations to establish clear links between the fundamental current mechanisms and the governing parameters. Comparing these equations with measured current–voltage characteristics, we show that the fundamental equations for tunnelling and thermionic emission can accurately model 4H silicon carbide Schottky barrier diodes over a large temperature and voltage range. Based on the obtained results, we discuss implications and misconceptions regarding barrier inhomogeneity, barrier height measurement, and reverse-bias temperature dependencies.
    View less >
    Journal Title
    Scientific Reports
    Volume
    9
    Issue
    1
    DOI
    https://doi.org/10.1038/s41598-019-40287-1
    Copyright Statement
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    Subject
    Nanoelectronics
    Science & Technology
    Multidisciplinary Sciences
    Science & Technology - Other Topics
    THERMIONIC-FIELD EMISSION
    RICHARDSON CONSTANT
    Publication URI
    http://hdl.handle.net/10072/387382
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander