• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Urban Parcel Grouping Method Based on Urban form and Functional Connectivity Characterisation

    Thumbnail
    View/Open
    Dale233757Published.pdf (1.939Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Wu, P
    Zhang, S
    Li, H
    Dale, P
    Ding, X
    Lu, Y
    Griffith University Author(s)
    Dale, Patricia E.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The grouping of parcel data based on proximity is a pre-processing step of GIS and a key link of urban structure recognition for regional function discovery and urban planning. Currently, most literature abstracts parcels into points and clusters parcels based on their attribute similarity, which produces a large number of coarse granularity functional regions or discrete distribution of parcels that is inconsistent with human cognition. In this paper, we propose a novel parcel grouping method to optimise this issue, which considers both the urban morphology and the urban functional connectivity. Infiltration behaviours of ...
    View more >
    The grouping of parcel data based on proximity is a pre-processing step of GIS and a key link of urban structure recognition for regional function discovery and urban planning. Currently, most literature abstracts parcels into points and clusters parcels based on their attribute similarity, which produces a large number of coarse granularity functional regions or discrete distribution of parcels that is inconsistent with human cognition. In this paper, we propose a novel parcel grouping method to optimise this issue, which considers both the urban morphology and the urban functional connectivity. Infiltration behaviours of urban components provide a basis for exploring the correlation between morphology mechanism and functional connectivity of urban areas. We measured the infiltration behaviours among adjacent parcels and concluded that the occurrence of infiltration behaviours often appears in the form of groups, which indicated the practical significance of parcel grouping. Our method employed two parcel morphology indicators: the similarity of the line segments and the compactness of the distribution. The line segment similarity was used to establish the adjacent relationship among parcels and the compactness was used to optimise the grouping result in obtain a satisfactory visual expression. In our study, constrained Delaunay triangulation, Hausdorff distance, and graph theory were employed to construct the proximity, delineate the parcel adjacency matrix, and implement the grouping of parcels. We applied this method for grouping urban parcel data of Beijing and verified the rationality of grouping results based on the quantified results of infiltration behaviours. Our method proved to take a good account of infiltration behaviours and satisfied human cognition, compared with a k-means++ method. We also presented a case using Xicheng District in Beijing to demonstrate the practicability of the method. The result showed that our method obtained fine-grained groups while ensuring functional regions-integrity.
    View less >
    Journal Title
    ISPRS International Journal of Geo-Information
    Volume
    8
    Issue
    6
    DOI
    https://doi.org/10.3390/ijgi8060282
    Copyright Statement
    © 2019 by the Authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Physical geography and environmental geoscience
    Geomatic engineering
    Publication URI
    http://hdl.handle.net/10072/387543
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander