• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Grain Zn concentrations and yield of Zn-biofortified versus Zn-efficient rice genotypes under contrasting growth conditions

    Author(s)
    Goloran, JB
    Johnson-Beebout, SE
    Morete, MJ
    Impa, SM
    Kirk, GJD
    Wissuwa, M
    Griffith University Author(s)
    Goloran, Johnvie B.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Higher grain Zn concentration in ‘biofortified’ rice genotypes, bred for high grain Zn concentration, should not be at the expense of reduced grain yield. This study examined the grain yield and grain Zn concentration of Zn-biofortified genotypes in field experiments in the Philippines. Zinc-biofortified genotypes (high grain Zn concentration in Zn-sufficient soil) were compared with efficient genotypes (tolerant of soil Zn deficiency), inefficient genotypes (sensitive to soil Zn deficiency) and check genotypes (popular local varieties) at four sites (Bay, Bohol, Bukidnon and IRRI) with differing types and degrees of Zn ...
    View more >
    Higher grain Zn concentration in ‘biofortified’ rice genotypes, bred for high grain Zn concentration, should not be at the expense of reduced grain yield. This study examined the grain yield and grain Zn concentration of Zn-biofortified genotypes in field experiments in the Philippines. Zinc-biofortified genotypes (high grain Zn concentration in Zn-sufficient soil) were compared with efficient genotypes (tolerant of soil Zn deficiency), inefficient genotypes (sensitive to soil Zn deficiency) and check genotypes (popular local varieties) at four sites (Bay, Bohol, Bukidnon and IRRI) with differing types and degrees of Zn deficiency, over five cropping seasons (wet season 2012, 2014 and 2015 and dry season 2013 and 2015). A common experimental design and plot size were used with treatments (genotypes and Zn fertilization) arranged in a two-factorial randomized complete block design. The results showed that biofortified genotypes achieved both the Philippine grain yield target (4.0 t ha−1) and grain Zn biofortification target (30 mg kg−1 for brown rice) only when grown under Zn-sufficient conditions. In Zn-deficient soils, most Zn-biofortified and deficiency-tolerant genotypes reached the Zn concentration target but not the yield target, suggesting the need to correct the soil Zn-deficiency to prevent yield penalty. Further, results from IRRI showed that only Zn-fertilized plants were able to achieve the Zn biofortification target during the wet season; whereas during the dry season, when the soil was less chemically-reduced and therefore the soil Zn probably more plant-available, grain Zn levels were all above the threshold, with or without Zn fertilizer. This suggests that Zn fertilization may not be needed during the dry season in soils with sufficient potentially plant-available Zn.
    View less >
    Journal Title
    Field Crops Research
    Volume
    234
    DOI
    https://doi.org/10.1016/j.fcr.2019.01.011
    Subject
    Soil sciences
    Agriculture, land and farm management
    Crop and pasture production
    Science & Technology
    Life Sciences & Biomedicine
    Agronomy
    Agriculture
    Grain Zn biofortification
    Publication URI
    http://hdl.handle.net/10072/387619
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander