• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls

    Author(s)
    Wang, Z
    Zhu, Y
    Luo, W
    Ren, Y
    Cheng, X
    Xu, P
    Li, X
    Deng, Y
    Zhao, D
    Griffith University Author(s)
    Zhao, Dongyuan
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Ordered mesoporous carbon (OMC)-metal oxide composites have attracted great interest due to their combination of high surface area, uniform pores, good conductivity of mesoporous carbon, and excellent photo-, electro- and chemical sensing properties of metal oxides. Herein, OMC-metal oxide composites with large mesopores and monodispersed CoOx nanoparticles were synthesized via a controllable multicomponent cooperative coassembly of ultrahigh-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) copolymers, resol (soluble phenoic resin carbon precursor), and cobalt nitrate (cobalt oxide precursor). The obtained ...
    View more >
    Ordered mesoporous carbon (OMC)-metal oxide composites have attracted great interest due to their combination of high surface area, uniform pores, good conductivity of mesoporous carbon, and excellent photo-, electro- and chemical sensing properties of metal oxides. Herein, OMC-metal oxide composites with large mesopores and monodispersed CoOx nanoparticles were synthesized via a controllable multicomponent cooperative coassembly of ultrahigh-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) copolymers, resol (soluble phenoic resin carbon precursor), and cobalt nitrate (cobalt oxide precursor). The obtained nanocomposites possess a face-centered cubic (fcc) mesoporous structure, large pore size (13.4-16.0 nm), high surface area (394-483 m2/g), large pore volume (0.41-0.48 cm3/g), and uniform CoOx nanoparticles with tunable diameters (6.4-16.7 nm). The long chain length of amphiphilic PEO-b-PS template molecules contributes to large mesopores and thick pore walls that allow a controllable nucleation of metal oxides and the formation of CoOx nanoparticles that are partially embedded and stabilized in the graphitic carbon walls and semiexposed in the mesopore channels, avoiding pore blockage and facilitating the mass transportation of guest molecules. The in situ loaded highly dispersed CoOx nanoparticles promote the graphitization of carbon frameworks during the pyrolysis procedure at relative lower temperatures (∼700 °C). Due to the strong synergistic effect between the graphitic OMC with large pores and uniform active p-type CoOx nanoparticles, the obtained mesoporous nanocomposite exhibit superior performance in hydrogen sensing.
    View less >
    Journal Title
    Chemistry of Materials
    Volume
    28
    Issue
    21
    DOI
    https://doi.org/10.1021/acs.chemmater.6b03035
    Subject
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/388094
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander