• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Incorporation of graphene into SnO2 photoanodes for dye-sensitized solar cells

    Thumbnail
    View/Open
    Batmunkh249007-Accepted.pdf (1.005Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Batmunkh, Munkhbayar
    Dadkhah, Mahnaz
    Shearer, Cameron J
    Biggs, Mark J
    Shapter, Joseph G
    Griffith University Author(s)
    Batmunkh, Munkhbayar
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    In dye-sensitized solar cell (DSSC) photoanodes, tin dioxide (SnO 2 ) structures present a promising alternative semiconducting oxide to the conventional titania (TiO 2 ), but they suffer from poor photovoltaic (PV) efficiency caused by insufficient dye adsorption and low energy value of the conduction band. A hybrid structure consisting of SnO 2 and reduced graphene oxide (SnO 2 -RGO) was synthesized via a microwave-assisted method and has been employed as a photoanode in DSSCs. Incorporation of RGO into the SnO 2 photoanode enhanced the power conversion efficiency of DSSC device by 91.5%, as compared to the device assembled ...
    View more >
    In dye-sensitized solar cell (DSSC) photoanodes, tin dioxide (SnO 2 ) structures present a promising alternative semiconducting oxide to the conventional titania (TiO 2 ), but they suffer from poor photovoltaic (PV) efficiency caused by insufficient dye adsorption and low energy value of the conduction band. A hybrid structure consisting of SnO 2 and reduced graphene oxide (SnO 2 -RGO) was synthesized via a microwave-assisted method and has been employed as a photoanode in DSSCs. Incorporation of RGO into the SnO 2 photoanode enhanced the power conversion efficiency of DSSC device by 91.5%, as compared to the device assembled without RGO. This efficiency improvement can be attributed to increased dye loading, enhanced electron transfer and addition of suitable energy levels in the photoanode. Finally, the use of RGO addresses the major shortcoming of SnO 2 when employed as a DSSC photoanode, namely poor dye adsorption and slow electron transfer rate.
    View less >
    Journal Title
    Applied Surface Science
    Volume
    387
    DOI
    https://doi.org/10.1016/j.apsusc.2016.06.146
    Copyright Statement
    © 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Nanomaterials
    Nanoelectronics
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Materials Science, Coatings & Films
    Publication URI
    http://hdl.handle.net/10072/388176
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander