• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications

    Author(s)
    Batmunkh, Munkhbayar
    Bat-Erdene, Munkhjargal
    Shapter, Joseph G
    Griffith University Author(s)
    Batmunkh, Munkhbayar
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements ...
    View more >
    Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next-generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene-based materials are suitable for various applications, including photovoltaics.
    View less >
    Journal Title
    Advanced Materials
    Volume
    28
    Issue
    39
    DOI
    https://doi.org/10.1002/adma.201602254
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Science & Technology
    Physical Sciences
    Chemistry, Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/388177
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander