• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling

    Author(s)
    Hamlet, Stephen M
    Lee, Ryan SB
    Moon, Ho-Jin
    Alfarsi, Mohammed A
    Ivanovski, Saso
    Griffith University Author(s)
    Hamlet, Stephen
    Moon, Ho-Jin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Objectives: As biomaterial-induced modulation of mediators of the immune response may be a potential therapeutic approach to enhance wound healing events, the aim of this study was to delineate the effects of titanium surface modification on macrophage phenotype and function. Material and methods: Rodent bone marrow-derived macrophages were polarized into M1 and M2 phenotypes and cultured on micro-rough (SLA) and hydrophilic modified SLA (modSLA) titanium discs. Macrophage phenotype and cytokine secretion were subsequently assessed by immunostaining and ELISA, respectively. Osteoblast gene expression in response to culture ...
    View more >
    Objectives: As biomaterial-induced modulation of mediators of the immune response may be a potential therapeutic approach to enhance wound healing events, the aim of this study was to delineate the effects of titanium surface modification on macrophage phenotype and function. Material and methods: Rodent bone marrow-derived macrophages were polarized into M1 and M2 phenotypes and cultured on micro-rough (SLA) and hydrophilic modified SLA (modSLA) titanium discs. Macrophage phenotype and cytokine secretion were subsequently assessed by immunostaining and ELISA, respectively. Osteoblast gene expression in response to culture in the M1 and M2 macrophage conditioned media was also evaluated over 7 days by RT-PCR. Results: M1 macrophage culture on the modSLA surface promoted an M2-like phenotype as demonstrated by marked CD163 protein expression, Arg1 gene expression and the secretion of cytokines that significantly upregulated in osteoblasts the expression of genes associated with the TGF-ß/BMP signalling pathway and osteogenesis. In comparison, M2 macrophage culture on SLA surface promoted an inflammatory phenotype and cytokine profile that was not conducive for osteogenic gene expression. Conclusions: Macrophages are able to alter or switch their phenotype according to the signals received from the biomaterial surface. A hydrophilic micro-rough titanium surface topography elicits a macrophage phenotype associated with reduced inflammation and enhanced pro-osteogenic signalling.
    View less >
    Journal Title
    Clinical Oral Implants Research
    DOI
    https://doi.org/10.1111/clr.13522
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Biomedical engineering
    Dentistry
    Science & Technology
    Life Sciences & Biomedicine
    Technology
    Dentistry, Oral Surgery & Medicine
    Engineering, Biomedical
    Publication URI
    http://hdl.handle.net/10072/388274
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander