Show simple item record

dc.contributor.authorZheng, Zhong
dc.contributor.authorZhang, Shaoqing
dc.contributor.authorWang, Jianqiu
dc.contributor.authorZhang, Jianqi
dc.contributor.authorZhang, Dongyang
dc.contributor.authorZhang, Yuan
dc.contributor.authorWei, Zhixiang
dc.contributor.authorTang, Zhiyong
dc.contributor.authorHou, Jianhui
dc.contributor.authorZhou, Huiqiong
dc.date.accessioned2019-10-14T03:45:07Z
dc.date.available2019-10-14T03:45:07Z
dc.date.issued2019
dc.identifier.issn2050-7488en_US
dc.identifier.doi10.1039/c8ta11624een_US
dc.identifier.urihttp://hdl.handle.net/10072/388370
dc.description.abstractSince inverted organic solar cells have shown great advantages in achieving good stability, developing effective methods to increase power conversion efficiency is very important for practical applications. The demand for improving the photovoltaic performance has promoted excellent modulations of all components in inverted devices including electron transporting layers. Here, we developed an effective method of achieving systematic tuning of surface free energy of ZnO electron transporting layers with continuous gradation from 51.23 mN m−1 to 76.62 mN m−1 by mixing ZnO nanoparticles with PFN-Br. Based on the highly efficient bulk heterojunction system PBDB-TF : IT-4F, we achieved enhanced open circuit voltage (0.87 V), fill factor (78.79%) and power conversion efficiency (13.82%) in inverted device which is benefitted from the optimized bulk heterojunction morphology on electron transporting layer with 63.89 mN m−1 surface free energy. Moreover, the optimized electron transporting layer showed much better stability than the control ZnO electron transporting layer due to the well-modified dispersity of nanoparticles. Our comprehensive analyses provide deep insights into the recombination/morphology control adjusted by the surface free energy of interfacial layers, which shall be the key factors affecting the device characteristics of inverted organic solar cells.en_US
dc.description.peerreviewedYesen_US
dc.languageEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofpagefrom3570en_US
dc.relation.ispartofpageto3576en_US
dc.relation.ispartofissue8en_US
dc.relation.ispartofjournalJournal of Materials Chemistry Aen_US
dc.relation.ispartofvolume7en_US
dc.subject.fieldofresearchMacromolecular and Materials Chemistryen_US
dc.subject.fieldofresearchcode0303en_US
dc.subject.keywordsScience & Technologyen_US
dc.subject.keywordsPhysical Sciencesen_US
dc.subject.keywordsTechnologyen_US
dc.subject.keywordsChemistry, Physicalen_US
dc.subject.keywordsEnergy & Fuelsen_US
dc.titleExquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structureen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Articlesen_US
dcterms.bibliographicCitationZheng, Z; Zhang, S; Wang, J; Zhang, J; Zhang, D; Zhang, Y; Wei, Z; Tang, Z; Hou, J; Zhou, H, Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure, Journal of Materials Chemistry A, 2019, 7 (8), pp. 3570-3576en_US
dc.date.updated2019-10-14T03:43:05Z
gro.hasfulltextNo Full Text
gro.griffith.authorTang, Zhiyong


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record