Targeted synthesis of ionic liquid-polyoxometalate derived Mo-based electrodes for advanced electrochemical performance
Author(s)
Chen, Guojian
Zhang, Lei
Zhang, Yadong
Liu, Ke
Long, Zhouyang
Wang, Ying
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Rational design of advanced electrode materials with high capacity and long cycle stability is a great challenge for both lithium and sodium storage. In this work, we report a versatile strategy for the synthesis of N/P-codoped MoO2@carbon (N/P-MoO2@C) electrodes via a simple pyrolysis of ionic liquid-based polyoxometalate (IL-POM) molecular precursors. The contents of C, N, and P, and the pore geometry of N/P-MoO2@C networks can be easily tailored by adjusting the position of cyano groups in the IL-POM precursor. Benefiting from this novel design, the optimized N/P-MoO2@C4 electrode with cross-linked porous tunnels and ...
View more >Rational design of advanced electrode materials with high capacity and long cycle stability is a great challenge for both lithium and sodium storage. In this work, we report a versatile strategy for the synthesis of N/P-codoped MoO2@carbon (N/P-MoO2@C) electrodes via a simple pyrolysis of ionic liquid-based polyoxometalate (IL-POM) molecular precursors. The contents of C, N, and P, and the pore geometry of N/P-MoO2@C networks can be easily tailored by adjusting the position of cyano groups in the IL-POM precursor. Benefiting from this novel design, the optimized N/P-MoO2@C4 electrode with cross-linked porous tunnels and abundant defects exhibits excellent lithium storage performance, with a high reversible capacity of 1381 mA h g−1 after 100 cycles at 0.5 A−1, and 346 mA h g−1 after 5000 cycles at 20 A g−1. The Li+ storage performance of this N/P-MoO2@C4 is dominated by pseudocapacitance behavior, which contributed to the high reversible capacity and long cycle stability. Exceptional sodium storage performance is also observed in the N/P-MoO2@C4 electrode with 0.02% capacity decay per cycle over 1100 cycles at 1.0 A g−1. The present approach provides some insight into the design and synthesis of task-specific Mo-based materials towards applications in energy storage and conversion.
View less >
View more >Rational design of advanced electrode materials with high capacity and long cycle stability is a great challenge for both lithium and sodium storage. In this work, we report a versatile strategy for the synthesis of N/P-codoped MoO2@carbon (N/P-MoO2@C) electrodes via a simple pyrolysis of ionic liquid-based polyoxometalate (IL-POM) molecular precursors. The contents of C, N, and P, and the pore geometry of N/P-MoO2@C networks can be easily tailored by adjusting the position of cyano groups in the IL-POM precursor. Benefiting from this novel design, the optimized N/P-MoO2@C4 electrode with cross-linked porous tunnels and abundant defects exhibits excellent lithium storage performance, with a high reversible capacity of 1381 mA h g−1 after 100 cycles at 0.5 A−1, and 346 mA h g−1 after 5000 cycles at 20 A g−1. The Li+ storage performance of this N/P-MoO2@C4 is dominated by pseudocapacitance behavior, which contributed to the high reversible capacity and long cycle stability. Exceptional sodium storage performance is also observed in the N/P-MoO2@C4 electrode with 0.02% capacity decay per cycle over 1100 cycles at 1.0 A g−1. The present approach provides some insight into the design and synthesis of task-specific Mo-based materials towards applications in energy storage and conversion.
View less >
Journal Title
Journal of Materials Chemistry A
Volume
7
Issue
12
Subject
Macromolecular and materials chemistry
Materials engineering
Other engineering
Science & Technology
Physical Sciences
Technology
Chemistry, Physical
Energy & Fuels