Pulse-duration dependence of the double-to-single ionization ratio of Ne by intense 780-nm and 800-nm laser fields: Comparison of simulations with experiments

View/ Open
File version
Version of Record (VoR)
Author(s)
Chen, Zhangjin
Zhang, Lina
Wang, Yali
Zatsarinny, Oleg
Bartschat, Klaus
Morishita, Toru
Lin, CD
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Accurate ab initio calculations of the ratio of double-to-single ionization of Ne atoms in strong laser fields are difficult due to the many-electron nature of the target. Here, with accurate total cross sections carefully evaluated by using the state-of-the-art many-electron R-matrix theory for both electron-impact ionization and electron-impact excitation of Ne+, we simulate the total double-ionization yields of Ne2+ in strong laser fields at 780 and 800 nm for pulse durations in the range from 7.5 to 200 fs based on the improved quantitative rescattering model. The corresponding single-ionization yields of Ne+ are calculated ...
View more >Accurate ab initio calculations of the ratio of double-to-single ionization of Ne atoms in strong laser fields are difficult due to the many-electron nature of the target. Here, with accurate total cross sections carefully evaluated by using the state-of-the-art many-electron R-matrix theory for both electron-impact ionization and electron-impact excitation of Ne+, we simulate the total double-ionization yields of Ne2+ in strong laser fields at 780 and 800 nm for pulse durations in the range from 7.5 to 200 fs based on the improved quantitative rescattering model. The corresponding single-ionization yields of Ne+ are calculated within the nonadiabatic tunneling model of Perelomov, Popov, and Terent'ev. The ratio of double-to-single ionization of Ne is then obtained from the calculated double- and single-ionization yields. By normalizing the ratio to the one calculated from solving the time-dependent Schrödinger equation for a short few-cycle pulse, we make quantitative comparisons of our results with experimental data to show that our model predicts the experimental findings very well. Finally, we analyze the pulse-duration dependence of the double-to-single ionization ratio.
View less >
View more >Accurate ab initio calculations of the ratio of double-to-single ionization of Ne atoms in strong laser fields are difficult due to the many-electron nature of the target. Here, with accurate total cross sections carefully evaluated by using the state-of-the-art many-electron R-matrix theory for both electron-impact ionization and electron-impact excitation of Ne+, we simulate the total double-ionization yields of Ne2+ in strong laser fields at 780 and 800 nm for pulse durations in the range from 7.5 to 200 fs based on the improved quantitative rescattering model. The corresponding single-ionization yields of Ne+ are calculated within the nonadiabatic tunneling model of Perelomov, Popov, and Terent'ev. The ratio of double-to-single ionization of Ne is then obtained from the calculated double- and single-ionization yields. By normalizing the ratio to the one calculated from solving the time-dependent Schrödinger equation for a short few-cycle pulse, we make quantitative comparisons of our results with experimental data to show that our model predicts the experimental findings very well. Finally, we analyze the pulse-duration dependence of the double-to-single ionization ratio.
View less >
Journal Title
Physical Review A
Volume
99
Issue
4
Copyright Statement
© 2019 American Physical Society. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Atomic, molecular and optical physics
Science & Technology
Physical Sciences
Optics
Physics, Atomic, Molecular & Chemical