• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter

    Thumbnail
    Author(s)
    Franklin, Hannah M
    Carroll, Anthony R
    Chen, Chenrong
    Maxwell, Paul
    Burford, Michele A
    Griffith University Author(s)
    Franklin, Hannah M.
    Carroll, Anthony R.
    Chen, Chengrong
    Burford, Michele A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Wetting of leaf litter accumulated in riparian zones during rainfall events provides pulses of dissolved organic matter (DOM) to rivers. Restoring riparian vegetation aims to reduce sediment and nutrient transport into rivers, however DOM from leaf litter can stimulate phytoplankton growth and interfere with water treatment processes. Improved understanding of the loads and chemical composition of DOM leached from leaf litter of different plant species, and how subsequent leaching through soils affects DOM retention or transformation, is needed to predict the outcomes of riparian revegetation. To investigate this, we simulated ...
    View more >
    Wetting of leaf litter accumulated in riparian zones during rainfall events provides pulses of dissolved organic matter (DOM) to rivers. Restoring riparian vegetation aims to reduce sediment and nutrient transport into rivers, however DOM from leaf litter can stimulate phytoplankton growth and interfere with water treatment processes. Improved understanding of the loads and chemical composition of DOM leached from leaf litter of different plant species, and how subsequent leaching through soils affects DOM retention or transformation, is needed to predict the outcomes of riparian revegetation. To investigate this, we simulated rapid leaching of rainfall through the leaf litter of two riparian tree species with and without subsequent leaching through soil, comparing dissolved organic carbon (DOC) and nitrogen (DON) loads, and DOM chemical composition (via spectroscopic and novel NMR-fingerprinting techniques). Plant source affected the load and composition of DOM leaching, with Eucalyptus tereticornis leaching more DOC than Casuarina cunninghamiana. Additionally, E. tereticornis DOM had a higher sugar, myo-inositol, benzoic acid, flavonoid and oxygenated aromatic content. More than 90% of leaf litter DOM was retained in the soil under simulated repeated heavy rainfall. The DOM chemistry of these species determined the total loads and changes in DOM composition leaching through soil. Less E. tereticornis DOM was retained by the soil than C. cunninghamiana DOM, with sugars, myo-inositol and amino acids being poorly retained compared to fatty acids and aromatic compounds. It also appears that DOM from E. tereticornis litter primed the soil, resulting in more DON being leached compared with bare soil. In comparison, C. cunninghamiana litter resulted in greater retention of DON, oxygenated aromatic compounds and the amino acid tryptophan. This study provides new information on how a range of DOM sources and transformations affect the DOM ultimately leached into waterways, key to developing improved models of DOM transformations in catchments.
    View less >
    Journal Title
    Science of The Total Environment
    DOI
    https://doi.org/10.1016/j.scitotenv.2019.134530
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version
    Subject
    Environmental sciences
    Publication URI
    http://hdl.handle.net/10072/389249
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander