• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Fundamental Current Mechanisms in SiC Schottky Barrier Diodes: Physical Model, Experimental Verification and Implications

    Thumbnail
    View/Open
    Dimitrijev270416-Accepted.pdf (492.0Kb)
    Author(s)
    Dimitrijev, S
    Nicholls, J
    Tanner, P
    Han, J
    Griffith University Author(s)
    Han, Jisheng
    Tanner, Philip G.
    Nicholls, Jordan R.
    Dimitrijev, Sima
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    In this paper, we derive the equations for the current-voltage characteristics of SiC Schottky barrier diodes from the fundamental physics of thermionic emission and tunneling, as the two fundamental current mechanisms. An excellent fit between the model and the experimental data is achieved without the need for empirical fitting parameters, such as the commonly used ideality factor, and with a single set of physically meaningful parameters. This result shows that the current transport in the measured SiC Schottky diodes is not dominated by defects.In this paper, we derive the equations for the current-voltage characteristics of SiC Schottky barrier diodes from the fundamental physics of thermionic emission and tunneling, as the two fundamental current mechanisms. An excellent fit between the model and the experimental data is achieved without the need for empirical fitting parameters, such as the commonly used ideality factor, and with a single set of physically meaningful parameters. This result shows that the current transport in the measured SiC Schottky diodes is not dominated by defects.
    View less >
    Conference Title
    2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings
    DOI
    https://doi.org/10.1109/MIEL.2019.8889628
    Copyright Statement
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Electrical and Electronic Engineering
    Publication URI
    http://hdl.handle.net/10072/389564
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander