• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Maximising goals achievement through abstract argumentation frameworks: An optimal approach

    Author(s)
    Cohen, A
    Gottifredi, S
    Vallati, M
    García, AJ
    Antoniou, G
    Griffith University Author(s)
    Antoniou, Grigorios
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Argumentation is a prominent AI research area, focused on approaches and techniques for performing common-sense reasoning, that is of paramount importance in a wide range of real-world applications, such as decision support and recommender systems. In this work we introduce an approach for updating an abstract Argumentation Framework (AF) so that achievement with respect to a given set of goals is maximised. The set of goals identifies arguments for which a specific acceptability status (a labelling) will be pursued, distinguishing between “in” and “out” goals. Given an AF, a set of goals and a set of available actions ...
    View more >
    Argumentation is a prominent AI research area, focused on approaches and techniques for performing common-sense reasoning, that is of paramount importance in a wide range of real-world applications, such as decision support and recommender systems. In this work we introduce an approach for updating an abstract Argumentation Framework (AF) so that achievement with respect to a given set of goals is maximised. The set of goals identifies arguments for which a specific acceptability status (a labelling) will be pursued, distinguishing between “in” and “out” goals. Given an AF, a set of goals and a set of available actions allowing to add or remove arguments and attacks from the AF, our approach will select the strategy (set of actions) that should be applied in order to obtain a new AF where the goals achievement is maximised. Moreover, the selected strategy will be optimal with respect to the number of actions to be applied. In the context of argumentation-based expert and intelligent systems, our approach will provide tools allowing the user to interact with the argumentative reasoning process carried out by the system, learning how the strategy she undertakes will affect the recommendations she receives. For that, we propose an encoding of the AF, the available actions and goals as weighted Boolean formulas, and rely on MaxSAT techniques for selecting the optimal strategy. We provide an experimental analysis of our approach, and formally show that the results we obtain correspond to the optimal strategy.
    View less >
    Journal Title
    Expert Systems with Applications
    Volume
    141
    DOI
    https://doi.org/10.1016/j.eswa.2019.112930
    Subject
    Mathematical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/389823
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander