Physical Activity Recognition Using Posterior-Adapted Class-Based Fusion of Multiaccelerometer Data
File version
Accepted Manuscript (AM)
Author(s)
Chowdhury, Alok Kumar
Tjondronegoro, Dian
Chandran, Vinod
Trost, Stewart G
Year published
2018
Metadata
Show full item recordAbstract
This paper proposes the use of posterior-adapted class-based weighted decision fusion to effectively combine multiple accelerometer data for improving physical activity recognition. The cutting-edge performance of this method is benchmarked against model-based weighted fusion and class-based weighted fusion without posterior adaptation, based on two publicly available datasets, namely PAMAP2 and MHEALTH. Experimental results show that: 1) posterior-adapted class-based weighted fusion outperformed model-based and class-based weighted fusion; 2) decision fusion with two accelerometers showed statistically significant improvement ...
View more >This paper proposes the use of posterior-adapted class-based weighted decision fusion to effectively combine multiple accelerometer data for improving physical activity recognition. The cutting-edge performance of this method is benchmarked against model-based weighted fusion and class-based weighted fusion without posterior adaptation, based on two publicly available datasets, namely PAMAP2 and MHEALTH. Experimental results show that: 1) posterior-adapted class-based weighted fusion outperformed model-based and class-based weighted fusion; 2) decision fusion with two accelerometers showed statistically significant improvement in average performance compared to the use of a single accelerometer; 3) generally, decision fusion from three accelerometers did not show further improvement from the best combination of two accelerometers; and 4) a combination of ankle and wrist located accelerometers showed the best overall performance compared to any combination of two or three accelerometers.
View less >
View more >This paper proposes the use of posterior-adapted class-based weighted decision fusion to effectively combine multiple accelerometer data for improving physical activity recognition. The cutting-edge performance of this method is benchmarked against model-based weighted fusion and class-based weighted fusion without posterior adaptation, based on two publicly available datasets, namely PAMAP2 and MHEALTH. Experimental results show that: 1) posterior-adapted class-based weighted fusion outperformed model-based and class-based weighted fusion; 2) decision fusion with two accelerometers showed statistically significant improvement in average performance compared to the use of a single accelerometer; 3) generally, decision fusion from three accelerometers did not show further improvement from the best combination of two accelerometers; and 4) a combination of ankle and wrist located accelerometers showed the best overall performance compared to any combination of two or three accelerometers.
View less >
Journal Title
IEEE Journal of Biomedical and Health Informatics
Volume
22
Issue
3
Copyright Statement
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Biomedical and clinical sciences
Health informatics and information systems
Science & Technology
Technology
Life Sciences & Biomedicine
Computer Science, Information Systems
Computer Science, Interdisciplinary Applications