Nitrogen-Doped Carbon-Encased Bimetallic Selenide for High-Performance Water Electrolysis

View/ Open
File version
Version of Record (VoR)
Author(s)
Cao, Junhui
Wang, Kexin
Chen, Jiayi
Lei, Chaojun
Yang, Bin
Li, Zhongjian
Lei, Lecheng
Hou, Yang
Ostrikov, Kostya
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Demand of highly efficient earth-abundant transition metal-based electrocatalysts to replace noble metal materials for boosting oxygen evolution reaction (OER) is rapidly growing. Herein, an electrochemically exfoliated graphite (EG) foil supported bimetallic selenide encased in N-doped carbon (EG/(Co, Ni)Se2–NC) hybrid is developed and synthesized by a vapor-phase hydrothermal strategy and subsequent selenization process. The as-prepared EG/(Co, Ni)Se2–NC hybrid exhibits a core–shell structure where the particle diameter of (Co, Ni)Se2 core is about 70 nm and the thickness of N-doped carbon shell is approximately 5 nm. ...
View more >Demand of highly efficient earth-abundant transition metal-based electrocatalysts to replace noble metal materials for boosting oxygen evolution reaction (OER) is rapidly growing. Herein, an electrochemically exfoliated graphite (EG) foil supported bimetallic selenide encased in N-doped carbon (EG/(Co, Ni)Se2–NC) hybrid is developed and synthesized by a vapor-phase hydrothermal strategy and subsequent selenization process. The as-prepared EG/(Co, Ni)Se2–NC hybrid exhibits a core–shell structure where the particle diameter of (Co, Ni)Se2 core is about 70 nm and the thickness of N-doped carbon shell is approximately 5 nm. Benefitting from the synergistic effects between the combination of highly active Co species and improved electron transfer from Ni species, and N-doped carbon, the EG/(Co, Ni)Se2–NC hybrid shows remarkable electrocatalytic activity toward OER with a comparatively low overpotential of 258 mV at an current density of 10 mA cm−2 and a small Tafel slope of 73.3 mV dec−1. The excellent OER catalysis performance of EG/(Co, Ni)Se2–NC hybrid is much better than that of commercial Ir/C (343 mV at 10 mA cm−2 and 98.1 mV dec−1), and even almost the best among all previously reported binary CoNi selenide-based OER electrocatalysts. Furthermore, in situ electrochemical Raman spectroscopy combined with ex situ X-ray photoelectron spectroscopy analysis indicates that the superb OER catalysis activity can be attributed to the highly active Co–OOH species and modified electron transfer process from Ni element.
View less >
View more >Demand of highly efficient earth-abundant transition metal-based electrocatalysts to replace noble metal materials for boosting oxygen evolution reaction (OER) is rapidly growing. Herein, an electrochemically exfoliated graphite (EG) foil supported bimetallic selenide encased in N-doped carbon (EG/(Co, Ni)Se2–NC) hybrid is developed and synthesized by a vapor-phase hydrothermal strategy and subsequent selenization process. The as-prepared EG/(Co, Ni)Se2–NC hybrid exhibits a core–shell structure where the particle diameter of (Co, Ni)Se2 core is about 70 nm and the thickness of N-doped carbon shell is approximately 5 nm. Benefitting from the synergistic effects between the combination of highly active Co species and improved electron transfer from Ni species, and N-doped carbon, the EG/(Co, Ni)Se2–NC hybrid shows remarkable electrocatalytic activity toward OER with a comparatively low overpotential of 258 mV at an current density of 10 mA cm−2 and a small Tafel slope of 73.3 mV dec−1. The excellent OER catalysis performance of EG/(Co, Ni)Se2–NC hybrid is much better than that of commercial Ir/C (343 mV at 10 mA cm−2 and 98.1 mV dec−1), and even almost the best among all previously reported binary CoNi selenide-based OER electrocatalysts. Furthermore, in situ electrochemical Raman spectroscopy combined with ex situ X-ray photoelectron spectroscopy analysis indicates that the superb OER catalysis activity can be attributed to the highly active Co–OOH species and modified electron transfer process from Ni element.
View less >
Journal Title
Nano-Micro Letters
Volume
11
Issue
1
Copyright Statement
© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Subject
Nanotechnology
Science & Technology
Technology
Physical Sciences
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary