• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Diketopyrrolopyrrole copolymers based chemical sensors for the detection and discrimination of volatile organic compounds

    Thumbnail
    View/Open
    Sonar159890-Accepted.pdf (673.7Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Wang, Bin
    Sonar, Prashant
    Manzhos, Sergei
    Haick, Hossam
    Griffith University Author(s)
    Sonar, Prashant
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    With their high charge carrier mobility and easy solution processability, diketopyrrolopyrrole (DPP) copolymers are considered as very promising active organic semiconducting materials for a wide range of organic electronic devices. This class of materials has already successfully demonstrated a very high mobility in organic thin film transistors (OFETs) and impressive performance in organic photovoltaic (OPV) devices. Apart from OFET and OPV, there are very few reports about these materials for other organic electronic devices such as chemical sensors. In the present work, we have used these high mobility DPP copolymers as ...
    View more >
    With their high charge carrier mobility and easy solution processability, diketopyrrolopyrrole (DPP) copolymers are considered as very promising active organic semiconducting materials for a wide range of organic electronic devices. This class of materials has already successfully demonstrated a very high mobility in organic thin film transistors (OFETs) and impressive performance in organic photovoltaic (OPV) devices. Apart from OFET and OPV, there are very few reports about these materials for other organic electronic devices such as chemical sensors. In the present work, we have used these high mobility DPP copolymers as active semiconductors in OFET device based chemical sensors for sensing of volatile organic compounds (VOCs) in air. Combined with a pattern recognition algorithm and sensor data obtained from an array of DPP copolymer OFETs, VOCs with similar structure can be discriminated from each other. This opens up a novel opportunity to use promising DPP based polymers as active semiconductors for chemical sensors.
    View less >
    Journal Title
    Sensors and Actuators B: Chemical
    Volume
    251
    DOI
    https://doi.org/10.1016/j.snb.2017.04.167
    Copyright Statement
    © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Atomic, molecular and optical physics
    Analytical chemistry
    Materials engineering
    Science & Technology
    Physical Sciences
    Electrochemistry
    Publication URI
    http://hdl.handle.net/10072/390743
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander