• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Modified Full Velocity Difference Model with Acceleration and Deceleration Confinement: Calibrations, Validations, and Scenario Analyses

    Author(s)
    Yu, Y
    Jiang, R
    Qu, X
    Griffith University Author(s)
    Qu, Xiaobo
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The Full Velocity Difference (FVD) model is a well-recognized and widely-used time continuous car following model. Although the model has very good simulation performances in most cases, it is not applicable to some specific traffic scenarios, where it can generate very large or even overshooting accelerations or decelerations that are totally unnecessary and might be far beyond the acceleration/deceleration limits of real vehicles. In this paper, we explore the reason and attempt to correct it by proposing a confined Full Velocity Difference (c-FVD) model in which we limit the accelerations or decelerations generated by the ...
    View more >
    The Full Velocity Difference (FVD) model is a well-recognized and widely-used time continuous car following model. Although the model has very good simulation performances in most cases, it is not applicable to some specific traffic scenarios, where it can generate very large or even overshooting accelerations or decelerations that are totally unnecessary and might be far beyond the acceleration/deceleration limits of real vehicles. In this paper, we explore the reason and attempt to correct it by proposing a confined Full Velocity Difference (c-FVD) model in which we limit the accelerations or decelerations generated by the existing FVD models to a reasonable level. The performances of both models are compared from both microscopic and macroscopic perspectives. The ability of the modified model to generate strong but reasonable decelerations to avoid accidents in urgent traffic scenarios is also validated. According to the comparative analyses, both models will have same performances in most cases while the c-FVD model will outperform the existing FVD model in certain scenarios where very large or overshooting accelerations or decelerations are involved.
    View less >
    Journal Title
    IEEE Intelligent Transportation Systems Magazine
    Publisher URI
    https://ieeexplore.ieee.org/document/8686192
    DOI
    https://doi.org/10.1109/MITS.2019.2898965
    Subject
    Information systems
    Publication URI
    http://hdl.handle.net/10072/390902
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander