Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution

View/ Open
File version
Version of Record (VoR)
Author(s)
Hamzah, Harina Amer
Gee, William J
Raithby, Paul R
Teat, Simon J
Mahon, Mary F
Burrows, Andrew D
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
The Mannich reaction of the zirconium MOF [Zr6O4(OH)4(bdc‐NH2)6] (UiO‐66‐NH2, bdc‐NH2=2‐amino‐1,4‐benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2‐mercaptoimidazole led to post‐synthetic modification (PSM) through C−N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2‐mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO‐66‐NH2, but the compounds show enhanced selectivity for adsorption of CO2 over N2 at 273 K. The thiol‐containing MOFs adsorb ...
View more >The Mannich reaction of the zirconium MOF [Zr6O4(OH)4(bdc‐NH2)6] (UiO‐66‐NH2, bdc‐NH2=2‐amino‐1,4‐benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2‐mercaptoimidazole led to post‐synthetic modification (PSM) through C−N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2‐mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO‐66‐NH2, but the compounds show enhanced selectivity for adsorption of CO2 over N2 at 273 K. The thiol‐containing MOFs adsorb mercury(II) ions from aqueous solution, removing up to 99 %. The Mannich reaction with pyrazole succeeds on [Zn4O(bdc‐NH2)3] (IRMOF‐3), but a similar reaction on [Zn2(bdc‐NH2)2(dabco)] (dabco=1,4‐diazabicyclo[2.2.2]octane) gave [Zn3(bdc‐NH2)1.32(bdc‐NHCH2pyz)1.68(dabco)]⋅2 C7H8 5, whereas the reaction with imidazole gave the expected PSM product. Compound 5 forms via a dissolution–recrystallisation process that is triggered by the “free” pyrazolate nitrogen atom competing with dabco for coordination to the zinc(II) centre. In contrast, the “free” nitrogen atom on the imidazolate is too far away to compete in this way. Mannich reactions on [In(OH)(bdc‐NH2)] (MIL‐68(In)‐NH2) stop after the first step, and the product was identified as [In(OH)(bdc‐NH2)0.41(bdc‐NHCH2OCH3)0.30(bdc‐N=CH2)0.29], with addition of the heterocycle prevented by steric interactions.
View less >
View more >The Mannich reaction of the zirconium MOF [Zr6O4(OH)4(bdc‐NH2)6] (UiO‐66‐NH2, bdc‐NH2=2‐amino‐1,4‐benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2‐mercaptoimidazole led to post‐synthetic modification (PSM) through C−N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2‐mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO‐66‐NH2, but the compounds show enhanced selectivity for adsorption of CO2 over N2 at 273 K. The thiol‐containing MOFs adsorb mercury(II) ions from aqueous solution, removing up to 99 %. The Mannich reaction with pyrazole succeeds on [Zn4O(bdc‐NH2)3] (IRMOF‐3), but a similar reaction on [Zn2(bdc‐NH2)2(dabco)] (dabco=1,4‐diazabicyclo[2.2.2]octane) gave [Zn3(bdc‐NH2)1.32(bdc‐NHCH2pyz)1.68(dabco)]⋅2 C7H8 5, whereas the reaction with imidazole gave the expected PSM product. Compound 5 forms via a dissolution–recrystallisation process that is triggered by the “free” pyrazolate nitrogen atom competing with dabco for coordination to the zinc(II) centre. In contrast, the “free” nitrogen atom on the imidazolate is too far away to compete in this way. Mannich reactions on [In(OH)(bdc‐NH2)] (MIL‐68(In)‐NH2) stop after the first step, and the product was identified as [In(OH)(bdc‐NH2)0.41(bdc‐NHCH2OCH3)0.30(bdc‐N=CH2)0.29], with addition of the heterocycle prevented by steric interactions.
View less >
Journal Title
Chemistry: A European Journal
Volume
24
Issue
43
Copyright Statement
© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Subject
Chemical sciences
Science & Technology
Physical Sciences
Chemistry, Multidisciplinary
Mannich reactions