Automatic building detection using LIDAR data and multispectral imagery

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Awrangjeb, M
Ravanbakhsh, M
Fraser, CS
Griffith University Author(s)
Year published
2010
Metadata
Show full item recordAbstract
An automatic building detection technique using LIDAR data and multispectral imagery has been proposed. Two masks are obtained from the LIDAR data: a 'primary building mask' and a 'secondary building mask'. The primary building mask indicates the void areas where the laser does not reach below a certain height threshold. The secondary building mask indicates the filled areas, from where the laser reflects, above the same threshold. Line segments are extracted from around the void areas in the primary building mask. Line segments around trees are removed using the normalized difference vegetation index derived from the ...
View more >An automatic building detection technique using LIDAR data and multispectral imagery has been proposed. Two masks are obtained from the LIDAR data: a 'primary building mask' and a 'secondary building mask'. The primary building mask indicates the void areas where the laser does not reach below a certain height threshold. The secondary building mask indicates the filled areas, from where the laser reflects, above the same threshold. Line segments are extracted from around the void areas in the primary building mask. Line segments around trees are removed using the normalized difference vegetation index derived from the orthorectified multispectral images. The initial building positions are obtained based on the remaining line segments. The complete buildings are detected from their initial positions using the two masks and multispectral images in the YIQ colour system. It is experimentally shown that the proposed technique can successfully detect buildings, when assessed in terms of 15 indices including completeness, correctness and quality.
View less >
View more >An automatic building detection technique using LIDAR data and multispectral imagery has been proposed. Two masks are obtained from the LIDAR data: a 'primary building mask' and a 'secondary building mask'. The primary building mask indicates the void areas where the laser does not reach below a certain height threshold. The secondary building mask indicates the filled areas, from where the laser reflects, above the same threshold. Line segments are extracted from around the void areas in the primary building mask. Line segments around trees are removed using the normalized difference vegetation index derived from the orthorectified multispectral images. The initial building positions are obtained based on the remaining line segments. The complete buildings are detected from their initial positions using the two masks and multispectral images in the YIQ colour system. It is experimentally shown that the proposed technique can successfully detect buildings, when assessed in terms of 15 indices including completeness, correctness and quality.
View less >
Conference Title
Digital Image Computing: Technqiues and Applications (DICTA), Proceedings
Copyright Statement
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Computer vision and multimedia computation
Geomatic engineering