Effects of Blood Flow Restriction Training with Protein Supplementation on Muscle Mass And Strength in Older Men

View/ Open
File version
Version of Record (VoR)
Author(s)
Centner, Christoph
Zdzieblik, Denise
Roberts, Llion
Gollhofer, Albert
Koenig, Daniel
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Blood flow restriction (BFR) training has been shown to induce favorable changes in muscle mass and strength with a considerably low training load (20 – 30% 1RM). However, it has never been evaluated if an additional post-exercise protein supplementation enhances the effects of this training regimen. Thirty healthy older men (60.1 ± 7.6 years) were enrolled in the 8-week intervention and randomly allocated to one of the following groups: low-load BFR training with protein (collagen hydrolysate) supplementation (BFR-CH), low-load BFR training with placebo (BFR-PLA), or a control group without training, but with protein ...
View more >Blood flow restriction (BFR) training has been shown to induce favorable changes in muscle mass and strength with a considerably low training load (20 – 30% 1RM). However, it has never been evaluated if an additional post-exercise protein supplementation enhances the effects of this training regimen. Thirty healthy older men (60.1 ± 7.6 years) were enrolled in the 8-week intervention and randomly allocated to one of the following groups: low-load BFR training with protein (collagen hydrolysate) supplementation (BFR-CH), low-load BFR training with placebo (BFR-PLA), or a control group without training, but with protein supplementation (CON). Muscle cross-sectional area (CSA), muscle strength, circulating reactive oxygen species and IGF-1 were measured before and after the intervention. Muscle CSA increased in both BFR-CH and BFR-PLA groups by 6.7 ± 3.2 % (p < 0.001) and 5.7 ± 2.7 % (p < 0.001) respectively. No significant changes were observed in the CON group (1.1 ± 1.7 %, p = 0.124). Evaluation of isometric strength (p = 0.247), insulin-like growth factor 1 (p = 0.705) and the production of reactive oxygen species (pt1 = 0.229; pt2 = 0.741) revealed no significant interaction effect but a significant long-term time effect (p < 0.001). Our results demonstrate that BFR training is an effective alternative for increasing muscle CSA in older men. Although there was a trend towards greater muscle mass adaptations in the BFR-CH group, these findings showed no statistical significance. Further research with larger sample sizes is needed to confirm these results.
View less >
View more >Blood flow restriction (BFR) training has been shown to induce favorable changes in muscle mass and strength with a considerably low training load (20 – 30% 1RM). However, it has never been evaluated if an additional post-exercise protein supplementation enhances the effects of this training regimen. Thirty healthy older men (60.1 ± 7.6 years) were enrolled in the 8-week intervention and randomly allocated to one of the following groups: low-load BFR training with protein (collagen hydrolysate) supplementation (BFR-CH), low-load BFR training with placebo (BFR-PLA), or a control group without training, but with protein supplementation (CON). Muscle cross-sectional area (CSA), muscle strength, circulating reactive oxygen species and IGF-1 were measured before and after the intervention. Muscle CSA increased in both BFR-CH and BFR-PLA groups by 6.7 ± 3.2 % (p < 0.001) and 5.7 ± 2.7 % (p < 0.001) respectively. No significant changes were observed in the CON group (1.1 ± 1.7 %, p = 0.124). Evaluation of isometric strength (p = 0.247), insulin-like growth factor 1 (p = 0.705) and the production of reactive oxygen species (pt1 = 0.229; pt2 = 0.741) revealed no significant interaction effect but a significant long-term time effect (p < 0.001). Our results demonstrate that BFR training is an effective alternative for increasing muscle CSA in older men. Although there was a trend towards greater muscle mass adaptations in the BFR-CH group, these findings showed no statistical significance. Further research with larger sample sizes is needed to confirm these results.
View less >
Journal Title
Journal of Sports Science and Medicine
Volume
18
Issue
3
Publisher URI
Copyright Statement
© 2019 JSSM. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mechanical engineering
Sports science and exercise
Psychology
Science & Technology
Life Sciences & Biomedicine
Sport Sciences
Blood flow restriction
sarcopenia