• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images

    Author(s)
    Ding, X
    Zhang, S
    Li, H
    Wu, P
    Dale, P
    Liu, L
    Cheng, S
    Griffith University Author(s)
    Dale, Patricia E.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    With hundreds of spectral bands, the rise of the issue of dimensionality in the classification of hyperspectral images is usually inevitable. In this paper, a restrictive polymorphic ant colony algorithm (RPACA) based band selection algorithm (RPACA-BS) was proposed to reduce the dimensionality of hyperspectral images. In the proposed algorithm, both local and global searches were conducted considering band similarity. Moreover, the problem of falling into local optima, due to the selection of similar band subsets although travelling different paths, was solved by varying the pheromone matrix between ants moving in opposite ...
    View more >
    With hundreds of spectral bands, the rise of the issue of dimensionality in the classification of hyperspectral images is usually inevitable. In this paper, a restrictive polymorphic ant colony algorithm (RPACA) based band selection algorithm (RPACA-BS) was proposed to reduce the dimensionality of hyperspectral images. In the proposed algorithm, both local and global searches were conducted considering band similarity. Moreover, the problem of falling into local optima, due to the selection of similar band subsets although travelling different paths, was solved by varying the pheromone matrix between ants moving in opposite directions. The performance of the proposed RPACA-BS algorithm was evaluated using three public datasets (the Indian Pines, Pavia University and Botswana datasets) based on average overall classification accuracy (OA) and CPU processing time. The experimental results showed that average OA of RPACA-BS was up to 89.80%, 94.96% and 92.17% for the Indian Pines, Pavia University and Botswana dataset, respectively, which was higher than that of the benchmarks, including the ant colony algorithm-based band selection algorithm (ACA-BS), polymorphic ant colony algorithm-based band selection algorithm (PACA-BS) and other band selection methods (e.g. the ant lion optimizer-based band selection algorithm). Meanwhile, the time consumed by RPACA-BS and PACA-BS were slightly lower than that of ACA-BS but obviously lower than that of other benchmarks. The proposed RPACA-BS method is thus able to effectively enhance the search abilities and efficiencies of the ACA-BS and PACA-BS algorithms to handle the complex band selection issue for hyperspectral remotely sensed images.
    View less >
    Journal Title
    International Journal of Remote Sensing
    Volume
    41
    Issue
    3
    DOI
    https://doi.org/10.1080/01431161.2019.1655810
    Subject
    Physical geography and environmental geoscience
    Geomatic engineering
    Publication URI
    http://hdl.handle.net/10072/392155
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander