Distributionally Robust Semi-Supervised Learning for People-Centric Sensing
Author(s)
Chen, Kaixuan
Yao, Lina
Zhang, Dalin
Chang, Xiaojun
Long, Guodong
Wang, Sen
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Semi-supervised learning is crucial for alleviating labelling burdens in people-centric sensing. However, humangenerated data inherently suffer from distribution shift in semi-supervised learning due to the diverse biological conditions and behavior patterns of humans. To address this problem, we propose a generic distributionally robust model for semi-supervised learning on distributionally shifted data. Considering both the discrepancy and the consistency between the labeled data and the unlabeled data, we learn the latent features that reduce person-specific discrepancy and preserve task-specific consistency. We evaluate ...
View more >Semi-supervised learning is crucial for alleviating labelling burdens in people-centric sensing. However, humangenerated data inherently suffer from distribution shift in semi-supervised learning due to the diverse biological conditions and behavior patterns of humans. To address this problem, we propose a generic distributionally robust model for semi-supervised learning on distributionally shifted data. Considering both the discrepancy and the consistency between the labeled data and the unlabeled data, we learn the latent features that reduce person-specific discrepancy and preserve task-specific consistency. We evaluate our model in a variety of people-centric recognition tasks on real-world datasets, including intention recognition, activity recognition, muscular movement recognition and gesture recognition. The experiment results demonstrate that the proposed model outperforms the state-of-the-art methods.
View less >
View more >Semi-supervised learning is crucial for alleviating labelling burdens in people-centric sensing. However, humangenerated data inherently suffer from distribution shift in semi-supervised learning due to the diverse biological conditions and behavior patterns of humans. To address this problem, we propose a generic distributionally robust model for semi-supervised learning on distributionally shifted data. Considering both the discrepancy and the consistency between the labeled data and the unlabeled data, we learn the latent features that reduce person-specific discrepancy and preserve task-specific consistency. We evaluate our model in a variety of people-centric recognition tasks on real-world datasets, including intention recognition, activity recognition, muscular movement recognition and gesture recognition. The experiment results demonstrate that the proposed model outperforms the state-of-the-art methods.
View less >
Conference Title
33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence
Subject
Artificial intelligence
Science & Technology
Computer Science, Artificial Intelligence
Computer Science, Theory & Methods
Engineering, Electrical & Electronic