Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period

View/ Open
File version
Version of Record (VoR)
Author(s)
Runnegar, Naomi
Sidjabat, Hanna
Goh, HM Sharon
Nimmo, Graeme R
Schembri, Mark A
Paterson, David L
Year published
2010
Metadata
Show full item recordAbstract
Multidrug-resistant Acinetobacter baumannii is a worldwide nosocomial menace. We sought to better understand its behavior through studying the molecular epidemiology of this organism at the Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia, over a 10-year period. Multilocus sequence typing (MLST), semiautomated repetitive sequence-based PCR (rep-PCR), and pulsed-field gel electrophoresis (PFGE) were performed on a selection of 31 A. baumannii isolates collected over the 10-year period to determine their relationships to one another. MLST also allowed us to put this information in a global context. The ...
View more >Multidrug-resistant Acinetobacter baumannii is a worldwide nosocomial menace. We sought to better understand its behavior through studying the molecular epidemiology of this organism at the Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia, over a 10-year period. Multilocus sequence typing (MLST), semiautomated repetitive sequence-based PCR (rep-PCR), and pulsed-field gel electrophoresis (PFGE) were performed on a selection of 31 A. baumannii isolates collected over the 10-year period to determine their relationships to one another. MLST also allowed us to put this information in a global context. The presence or absence of blaOXA-23 was also established. The presence of blaOXA-23 closely correlated with carbapenem resistance in our collection. Sequence type 92 (ST92) was the dominant sequence type and was present in the hospital for 9 years. There was also evidence of the spread of ST69, ST73, and ST125 (novel) within the hospital, but this was not sustained over long periods. There were only single examples of the novel sequence types ST126 and ST127. The different typing methods clustered the isolates similarly; however, PFGE and rep-PCR were more discriminatory than MLST. Worldwide, ST92 and the associated clonal complex 92 represent the most sampled and widespread sequence type(s) and are also known as European clone 2 and worldwide clonal lineage 2. Antibiotic susceptibility within ST92 is variable, suggesting a role for mechanisms other than antibiotic resistance in its success.
View less >
View more >Multidrug-resistant Acinetobacter baumannii is a worldwide nosocomial menace. We sought to better understand its behavior through studying the molecular epidemiology of this organism at the Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia, over a 10-year period. Multilocus sequence typing (MLST), semiautomated repetitive sequence-based PCR (rep-PCR), and pulsed-field gel electrophoresis (PFGE) were performed on a selection of 31 A. baumannii isolates collected over the 10-year period to determine their relationships to one another. MLST also allowed us to put this information in a global context. The presence or absence of blaOXA-23 was also established. The presence of blaOXA-23 closely correlated with carbapenem resistance in our collection. Sequence type 92 (ST92) was the dominant sequence type and was present in the hospital for 9 years. There was also evidence of the spread of ST69, ST73, and ST125 (novel) within the hospital, but this was not sustained over long periods. There were only single examples of the novel sequence types ST126 and ST127. The different typing methods clustered the isolates similarly; however, PFGE and rep-PCR were more discriminatory than MLST. Worldwide, ST92 and the associated clonal complex 92 represent the most sampled and widespread sequence type(s) and are also known as European clone 2 and worldwide clonal lineage 2. Antibiotic susceptibility within ST92 is variable, suggesting a role for mechanisms other than antibiotic resistance in its success.
View less >
Journal Title
Journal of Clinical Microbiology
Volume
48
Issue
11
Copyright Statement
© 2010 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Biological sciences
Agricultural, veterinary and food sciences
Biomedical and clinical sciences