• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Evidence of Channel Mobility Anisotropy on 4H-SiC MOSFETs with LowInterface Trap Density

    Author(s)
    Cabello, M
    Soler, V
    Haasmann, D
    Montserrat, J
    Rebollo, J
    Godignon, P
    Griffith University Author(s)
    Haasmann, Daniel E.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    In this work, we have evaluated 4° off-axis Si face 4H-SiC MOSFETs channel performance along both the [11-20] (perpendicular to steps) and [1-100] (parallel to steps) orientations, to evidence possible anisotropy on Si-face due to roughness scattering effect. Improved gate oxide treatments, allowing low interface state densities and therefore high mobility values, have been used on both NO and N2O annealed gate oxides. With these high channel mobility samples, a small anisotropy effect (up to 10%) can be observed at high electric fields. The anisotropy can be seen both at room and high temperatures. However, the optical ...
    View more >
    In this work, we have evaluated 4° off-axis Si face 4H-SiC MOSFETs channel performance along both the [11-20] (perpendicular to steps) and [1-100] (parallel to steps) orientations, to evidence possible anisotropy on Si-face due to roughness scattering effect. Improved gate oxide treatments, allowing low interface state densities and therefore high mobility values, have been used on both NO and N2O annealed gate oxides. With these high channel mobility samples, a small anisotropy effect (up to 10%) can be observed at high electric fields. The anisotropy can be seen both at room and high temperatures. However, the optical phonon scattering is the dominant effect under these biasing conditions.
    View less >
    Conference Title
    Materials Science Forum
    Volume
    963
    DOI
    https://doi.org/10.4028/www.scientific.net/MSF.963.473
    Subject
    Physical chemistry
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/392980
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander