• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Expression and Function of the Iron Transport Protein, Ferroportin, at the Maternal-Fetal Interface.

    Author(s)
    Ng, Shu-Wing
    Lee, Chungyan
    Ng, Allen C
    Ng, Shu-Kay
    Arcuri, Felice
    Toti, Paolo
    Norwitz, Errol R
    Griffith University Author(s)
    Ng, Shu Kay Angus
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Introduction: Iron is required to support feto-placental development. However, iron overload has been associated with abnormal decidualization, pregnancy complications including pre-eclampsia (PE) and spontaneous preterm birth (sPTB), and endometriosis. Ferroportin (Fpn) is the only known mammalian iron exporter, and plays an essential role in the export of iron from storage to blood for distribution to tissues. We hypothesize that Fpn is a critical regulator of iron homeostasis and ferroptosis (irondependent programmed cell death) at the maternal-fetal interface. To this end, we investigated the expression of Fpn in ...
    View more >
    Introduction: Iron is required to support feto-placental development. However, iron overload has been associated with abnormal decidualization, pregnancy complications including pre-eclampsia (PE) and spontaneous preterm birth (sPTB), and endometriosis. Ferroportin (Fpn) is the only known mammalian iron exporter, and plays an essential role in the export of iron from storage to blood for distribution to tissues. We hypothesize that Fpn is a critical regulator of iron homeostasis and ferroptosis (irondependent programmed cell death) at the maternal-fetal interface. To this end, we investigated the expression of Fpn in placentas/fetal membranes from normal/abnormal pregnancies and endometriosis tissues. Fpn function was tested in immortalized human endometrial stromal cells (HESCs) and first trimester extravillous trophoblast cells (Sw.71) with knockdown of Fpn expression. Methods: Immunohistochemistry for Fpn expression was performed in placentas/fetal membranes from 7 term births, 8 PE, and 3 sPTB, as well as 8 endometriosis tissues. HESC and Sw.71 cell lines with stable knockdown of Fpn expression were established using lentiviral short-hairpin RNAs. Iron overload was induced by increasing doses of ferric ammonium citrate (FAC) and the effect on cell growth measured by MTT assay. Results: Fpn was highly expressed in amnion, chorion, and decidual cells in fetal membranes; in placental trophoblasts; and in epithelial and stromal cells in endometriosis tissues. Fpn expression was significantly different in fetal membranes from term birth, PE, and sPTB (P=0.014, Kruskal-Wallis test), with a reduction in sPTB versus term birth (P=0.046, Mann-Whitney analysis with Bonferroni correction). Fpn staining in fetal membranes was also significantly correlated with gestational length (r=0.617, P=0.006). In contrast, Fpn staining in the placenta was not significantly different between the three groups (P=0.052), and did not correlate with gestational length (P=0.147). Fpn knockdown in Sw. cells did not affect cell proliferation under basal conditions. However, in the setting of iron overload, Fpn knockdown in Sw.71 cells increased sensitivity of the cells to high doses of FAC. Conclusion: The iron export protein Fpn is highly expressed in eutopic and ectopic endometrium, placental tissues, and fetal membranes. Fpn expression was significantly reduced in fetal membranes from sPTB. Functional studies suggest a critical role for Fpn in maintaining iron homeostasis and ferroptosis at the maternal-fetal interface.
    View less >
    Conference Title
    REPRODUCTIVE SCIENCES
    Volume
    26
    DOI
    https://doi.org/10.1177/1933719119834079
    Subject
    Epidemiology
    Science & Technology
    Life Sciences & Biomedicine
    Obstetrics & Gynecology
    Reproductive Biology
    Publication URI
    http://hdl.handle.net/10072/393125
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander