• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Towards Eliminating Overreacted Vehicular Maneuvers: Part II Comparative Analyses

    Author(s)
    Yu, Y
    Zou, Y
    Qu, X
    Griffith University Author(s)
    Qu, Xiaobo
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Microscopic car following models are of great importance to traffic flow studies and vehicular dynamics reproducing. The Full Velocity Difference (FVD) model is a well-known example with satisfactory simulation performances in most times. However, by analyzing the structure of the model formula, we find that it can sometimes generate overreacted vehicular maneuvers such as unrealistically strong (overshooting for short) accelerations or decelerations that conflict with normal driver habits or even beyond the actual vehicular acceleration/deceleration performance, especially when the target vehicle encounter a leader cut-in ...
    View more >
    Microscopic car following models are of great importance to traffic flow studies and vehicular dynamics reproducing. The Full Velocity Difference (FVD) model is a well-known example with satisfactory simulation performances in most times. However, by analyzing the structure of the model formula, we find that it can sometimes generate overreacted vehicular maneuvers such as unrealistically strong (overshooting for short) accelerations or decelerations that conflict with normal driver habits or even beyond the actual vehicular acceleration/deceleration performance, especially when the target vehicle encounter a leader cut-in or move-out (leader lane change for short). As Part II of the entire research, this paper conducts performance comparative analyses between the existing FVD model and the capped Full Velocity Difference (capped-FVD) model introduced in Part I of the research (the other companion paper) to address the above deficiency, and the results indicate that both models are equivalent in most times but the capped-FVD model will outperform the existing FVD model in aforementioned traffic scenarios since overreacted vehicular maneuvers (overshooting accelerations or decelerations) are totally eliminated. In other words, the aforementioned deficiency of the existing FVD model is totally corrected by the capped-FVD model and the capped-FVD model is a better choice for simulating vehicle movements in multi-lane roadways.
    View less >
    Conference Title
    Smart Innovation, Systems and Technologies
    Volume
    149
    DOI
    https://doi.org/10.1007/978-981-13-8683-1_15
    Subject
    Urban and regional planning
    Publication URI
    http://hdl.handle.net/10072/393141
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander