• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Photo-Cross-Linkable Polymer Inks for Solution-Based OLED Fabrication

    Author(s)
    Kunz, Susanna V
    Cole, Cameron M
    Welle, Alexander
    Shaw, Paul E
    Sonar, Prashant
    Thoebes, Nico-Patrick
    Baumann, Thomas
    Yambem, Soniya D
    Blasco, Eva
    Blinco, James P
    Barner-Kowollik, Christopher
    Griffith University Author(s)
    Sonar, Prashant
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    We introduce a catalyst-free, highly efficient, ambient temperature Diels–Alder reaction employing o-methylbenzaldehyde derivatives as photocaged dienes as an ideal approach for forming three-dimensional insoluble networks for inkjet printing of OLED emissive layer. Herein, poly(methyl methacrylate) based polymers containing 4-(9H-carbazol-9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)isoindoline-1,3-dione as a blue-green (λmax = 495–500 nm) thermally activated delayed fluorescence (TADF) emitter and a photochemically active maleimide/o-methylbenzaldehyde cross-linker couple were synthesized and their photo-cross-linking behavior ...
    View more >
    We introduce a catalyst-free, highly efficient, ambient temperature Diels–Alder reaction employing o-methylbenzaldehyde derivatives as photocaged dienes as an ideal approach for forming three-dimensional insoluble networks for inkjet printing of OLED emissive layer. Herein, poly(methyl methacrylate) based polymers containing 4-(9H-carbazol-9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)isoindoline-1,3-dione as a blue-green (λmax = 495–500 nm) thermally activated delayed fluorescence (TADF) emitter and a photochemically active maleimide/o-methylbenzaldehyde cross-linker couple were synthesized and their photo-cross-linking behavior was studied. Time resolved fluorescence measurements confirm that the TADF properties are maintained upon integration in a polymer network and HOMO/LUMO levels of the emitter species remain unchanged by the photo-cross-linking at 365 nm of the polymer chains. The network formation of the fluorescent films is evidenced by solvent resistance tests and monitored by Fourier transform infrared (FT-IR) spectroscopy as well as time of flight secondary ion mass spectroscopy (ToF-SIMS), showing the consumption of maleimide and o-methylbenzaldehyde groups with increasing irradiation time. The surface roughness is investigated via atomic force microscopy (AFM) and found to be unchanged by a solvent wash after the cross-linking. Furthermore, confirmation that the polymer solution can be printed on an inkjet-printer and subsequently photo-cross-linked for multilayer OLED device fabrication is obtained.
    View less >
    Journal Title
    Macromolecules
    Volume
    52
    Issue
    23
    DOI
    https://doi.org/10.1021/acs.macromol.9b02030
    Subject
    Chemical sciences
    Engineering
    Science & Technology
    Physical Sciences
    Polymer Science
    ACTIVATED DELAYED-FLUORESCENCE
    LIGHT-EMITTING-DIODES
    Publication URI
    http://hdl.handle.net/10072/393291
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander