• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Using Compensated Fluorescence Probes Data for Proactive Water Treatment Management

    Thumbnail
    View/Open
    Bertone238854-Published.pdf (406.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Bertone, Edoardo
    Franklin de Oliveira, Guilherme
    Stewart, Rodney
    O' Halloran, Kelvin
    Griffith University Author(s)
    Bertone, Edoardo
    Stewart, Rodney A.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In this study we investigated and quantified the effects of a number of environmental conditions on the readings of fluorescent dissolved organic matter (fDOM) and total algae probes. These currently monitor fDOM, chlorophyll-a and phycocyanin for the full depth profile of different reservoirs in South-East Queensland (Australia), but interferences and quenching affecting these parameters have led to uncertainty in the reliability of the readings. Additionally, in the case of the total algae probe, obtaining reliable estimates of algal biovolume or cell counts is challenging since the pigments content varies with species and ...
    View more >
    In this study we investigated and quantified the effects of a number of environmental conditions on the readings of fluorescent dissolved organic matter (fDOM) and total algae probes. These currently monitor fDOM, chlorophyll-a and phycocyanin for the full depth profile of different reservoirs in South-East Queensland (Australia), but interferences and quenching affecting these parameters have led to uncertainty in the reliability of the readings. Additionally, in the case of the total algae probe, obtaining reliable estimates of algal biovolume or cell counts is challenging since the pigments content varies with species and several other environmental variables influence estimates. With regards to the fDOM, a number of experiments were performed which enabled the development of a sequential compensation model accounting for the main trivial quenching. In addition, the compensated readings were compared to other experiments’ outputs to check for correlations between readings and character/molecular weight of DOM to develop an accurate real-time model that may be useful in assisting DOM removal by coagulation. Preliminary work with the algae probe also showed potential to derive more specific information on species/abundance for better cyanobacteria management.
    View less >
    Conference Title
    EPiC Series in Engineering
    Volume
    3
    DOI
    https://doi.org/10.29007/tq71
    Copyright Statement
    © 2018 The authors. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
    Subject
    Civil engineering
    Publication URI
    http://hdl.handle.net/10072/393316
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander