• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Is demineralization with dilute hydrofluoric acid a viable method for isolating mineral stabilized soil organic matter?

    Author(s)
    Sanderman, Jonathan
    Farrell, Mark
    Macreadie, Peter I
    Hayes, Matthew
    McGowan, Janine
    Baldock, Jeff
    Griffith University Author(s)
    Hayes, Matthew
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Hydrofluoric acid (HF) is a powerful tool in the investigation of soil organic matter (SOM) due to its ability to dissolve minerals but not break the chemical bonds of organic matter. These properties make the use of HF a common pretreatment step for removing paramagnetic interferences and concentrating carbon prior to solid-state 13C NMR spectroscopy with the working assumption that any SOM lost during HF treatment will not bias the resulting NMR spectra. Hydrofluoric acid is also used to isolate a mineral-stabilized OM fraction with the working assumption that most mineral-stabilized OM is primarily low molecular weight ...
    View more >
    Hydrofluoric acid (HF) is a powerful tool in the investigation of soil organic matter (SOM) due to its ability to dissolve minerals but not break the chemical bonds of organic matter. These properties make the use of HF a common pretreatment step for removing paramagnetic interferences and concentrating carbon prior to solid-state 13C NMR spectroscopy with the working assumption that any SOM lost during HF treatment will not bias the resulting NMR spectra. Hydrofluoric acid is also used to isolate a mineral-stabilized OM fraction with the working assumption that most mineral-stabilized OM is primarily low molecular weight compounds bound to mineral surfaces and when the minerals are dissolved in HF, the OM bound to these surfaces will be lost to solution. The working assumptions behind these two uses of HF dissolution appear to be contradictory. To address this apparent conundrum, we treated a number of simple organic compounds, soil and sediment samples with HF in 2 and 10% concentrations and tracked C and N loss as well as chemical shifts observed in solid-state 13C NMR spectra. For the soil and sediment samples there were inconsistent C and N losses but no difference in loss between the 2% and 10% HF concentrations. There were no obvious soil properties that could explain the differences in C or N loss. Overall, there were significant shifts in NMR-observable organic chemistry after treatment with both 2 and 10% HF with anoxic fine grained sediments under a seagrass meadow exhibiting strong preferential loss of O-alkyl C while terrestrial soils generally lost OM with more of a mixed chemical character. For many samples, the degree of selective loss was enough to significantly bias the interpretation of OM composition. Given the lack of ability to explain the large differences in C loss between samples with observed soil properties, this study suggests that caution should be used when interpreting HF-soluble C to indicate a mineral-stabilized fraction without considering the soil physicochemical environment and putative mechanisms for organo-mineral associations in that particular soil.
    View less >
    Journal Title
    Geoderma
    Volume
    304
    DOI
    https://doi.org/10.1016/j.geoderma.2017.03.002
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Science & Technology
    Life Sciences & Biomedicine
    Soil Science
    Agriculture
    Carbon sequestration
    Publication URI
    http://hdl.handle.net/10072/393620
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander