• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Solid-State NMR, X-Ray Diffraction, and Theoretical Studies of Neutral Mononuclear Molecular Bis(triphenylphosphine)silver(i) Mono-Carboxylate and -Nitrate Systems

    Author(s)
    Grabowsky, S
    White, AH
    Healy, PC
    Lapere, KM
    Ng, SW
    Skelton, BW
    Wild, DA
    Bowmaker, GA
    Hanna, JV
    Griffith University Author(s)
    Healy, Peter C.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Neutral mononuclear molecular silver(i) carboxylate complexes of the form [(Ph3P)2Ag(O2XY)] with O2XY = O2CCH2Ph, O2CCHPh2, O2CC(CH3)3, O2CCH2C(CH3)3, and O2CCF3 (compounds 1-4 and 5β) have been investigated in the solid state using single-crystal X-ray structure determinations, 1D 31P CPMAS NMR and 2D 31P-31P CPCOSY NMR measurements, and ab initio computational modelling. The results show that these complexes contain P2AgO2 molecular cores with four-coordinate silver in which the carboxylate ligands are weakly bound to the silver atoms via the two oxygen atoms giving rise to unsymmetrical chelate units. Crystal structure ...
    View more >
    Neutral mononuclear molecular silver(i) carboxylate complexes of the form [(Ph3P)2Ag(O2XY)] with O2XY = O2CCH2Ph, O2CCHPh2, O2CC(CH3)3, O2CCH2C(CH3)3, and O2CCF3 (compounds 1-4 and 5β) have been investigated in the solid state using single-crystal X-ray structure determinations, 1D 31P CPMAS NMR and 2D 31P-31P CPCOSY NMR measurements, and ab initio computational modelling. The results show that these complexes contain P2AgO2 molecular cores with four-coordinate silver in which the carboxylate ligands are weakly bound to the silver atoms via the two oxygen atoms giving rise to unsymmetrical chelate units. Crystal structure determinations and solid-state NMR spectra have also been analysed for the mononuclear molecular silver(i) nitrate complex [(Ph3P)2Ag(O2NO)] (9α) and two polymorphs of its toluene monosolvate (11α, β). In 9α, the two PPh3 ligands are of the same chirality, whereas in 11α, β, they are opposed. The crystalline environments in the polymorphs have been explored by way of Hirshfeld surface analyses, after quantum-mechanical isolated-molecule calculations had shown that although the molecular energies of the experimental geometries of 9α, and 11α, β are significantly different from each other and from the energies of the optimized geometries, the latter, in contrast, do not differ significantly from each other despite the conformational isomerism. It has further been shown using 9α as an example that the energy dependence on variation of the P-Ag-P angle over a range of ∼15° is only ∼5 kJ mol-1. All this indicates that the forces arising from crystal packing result in significant perturbations in the experimental geometries, but do not alter the stereoisomerism caused by the donor atom array around the Ag atom. In the NMR study, a strong inverse correlation has been found between 1J(107/109Ag,31P) and the Ag-P bond length across all carboxylate and nitrate compounds.
    View less >
    Journal Title
    Australian Journal of Chemistry
    DOI
    https://doi.org/10.1071/CH19616
    Note
    This publication was entered as an advanced online version.
    Subject
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/393846
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander