• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Differential response of soil respiration to nitrogen and phosphorus addition in a highly phosphorus-limited subtropical forest, China

    Author(s)
    Liu, Heming
    Zhou, Guiyao
    Bai, Shahla Hosseini
    Song, Jingjing
    Shang, Yijing
    He, Miao
    Wang, Xihua
    Zheng, Zemei
    Griffith University Author(s)
    Hosseini-Bai, Shahla
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Understanding feedback between terrestrial carbon (C) cycle and climate change is linked to the effects of nitrogen (N) and phosphorus (P) on soil respiration (Rs). However, the individual and interactive effects of N and P additions on soil respiration and its components (autotrophic [Ra] and heterotrophic respiration [Rh]) are not fully understood, especially in highly P limited subtropical forests. In this study, both field experiment and laboratory incubation (at 15 °C and 25 °C temperatures) were undertaken to examine the effects of N, P and N + P additions on Rs and Rh. Our results showed that N addition significantly ...
    View more >
    Understanding feedback between terrestrial carbon (C) cycle and climate change is linked to the effects of nitrogen (N) and phosphorus (P) on soil respiration (Rs). However, the individual and interactive effects of N and P additions on soil respiration and its components (autotrophic [Ra] and heterotrophic respiration [Rh]) are not fully understood, especially in highly P limited subtropical forests. In this study, both field experiment and laboratory incubation (at 15 °C and 25 °C temperatures) were undertaken to examine the effects of N, P and N + P additions on Rs and Rh. Our results showed that N addition significantly increased Rs by 21.09%, but P and N + P additions exhibited no effects on Rs under field conditions. Under laboratory condition, N addition significantly suppressed Rh whereas P and N + P additions increased Rh compared with control. Meanwhile, N and P additions exhibited an antagonistic interaction on Rs, but N and P additions synergistically affected Rh under laboratory incubations at both incubation temperatures of 15 °C and 25 °C. Cumulative Rh was negatively correlated with fine root biomass, but was positively correlated with microbial biomass carbon regardless of incubation temperatures. Our findings indicated that both individual and interactive effects of N and P additions on Rs and Rh were required to be considered to improve prediction of N and P effects on forest C dynamics in the highly P limited subtropical forests.
    View less >
    Journal Title
    Forest Ecology and Management
    Volume
    448
    DOI
    https://doi.org/10.1016/j.foreco.2019.06.020
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Science & Technology
    Life Sciences & Biomedicine
    Forestry
    Microbial respiration
    Fine root biomass
    Publication URI
    http://hdl.handle.net/10072/393938
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander