• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hexarelin targets neuroinflammatory pathways to preserve cardiac morphology and function in a mouse model of myocardial ischemia-reperfusion

    Thumbnail
    View/Open
    Peart426541-Published.pdf (2.597Mb)
    File version
    Version of Record (VoR)
    Author(s)
    McDonald, H
    Peart, J
    Kurniawan, ND
    Galloway, G
    Royce, SG
    Samuel, CS
    Chen, C
    Griffith University Author(s)
    Peart, Jason N.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Acute myocardial ischemia and reperfusion injury (IRI) underly the detrimental effects of coronary heart disease on the myocardium. Despite the ongoing advances in reperfusion therapies, there remains a lack of effective therapeutic strategies for preventing IRI. Growth hormone secretagogues (GHS) have been demonstrated to improve cardiac function, attenuate inflammation and modulate the autonomic nervous system (ANS) in models of cardiovascular disease. Recently, we demonstrated a reduction in infarct size after administration of hexarelin (HEX), in a murine model of myocardial infarction. In the present study we employed ...
    View more >
    Acute myocardial ischemia and reperfusion injury (IRI) underly the detrimental effects of coronary heart disease on the myocardium. Despite the ongoing advances in reperfusion therapies, there remains a lack of effective therapeutic strategies for preventing IRI. Growth hormone secretagogues (GHS) have been demonstrated to improve cardiac function, attenuate inflammation and modulate the autonomic nervous system (ANS) in models of cardiovascular disease. Recently, we demonstrated a reduction in infarct size after administration of hexarelin (HEX), in a murine model of myocardial infarction. In the present study we employed a reperfused ischemic (IR) model, to determine whether HEX would continue to have a cardioprotective influence in a model of higher clinical relevance. Myocardial ischemia was induced by transient ligation of the left descending coronary artery (tLAD) in C57BL/6 J mice followed by HEX (0.3 mg/kg/day; n = 20) or vehicle (VEH) (n = 18) administration for 21 days, first administered immediately prior-to reperfusion. IR-injured and sham mice were subjected to high-field magnetic resonance imaging to assess left ventricular (LV) function, with HEX-treated mice demonstrating a significant improvement in LV function compared with VEH-treated mice. A significant decrease in interstitial collagen, TGF-β1 expression and myofibroblast differentiation was also seen in the HEX-treated mice after 21 days. HEX treatment shifted the ANS balance towards a parasympathetic predominance; combined with a significant decrease in cardiac troponin-I and TNF-α levels, these findings were suggestive of an anti-inflammatory action on the myocardium mediated via HEX. In this model of IR, HEX appeared to rebalance the deregulated ANS and activate vagal anti-inflammatory pathways to prevent adverse remodelling and LV dysfunction. There are limited interventions focusing on IRI that have been successful in improving clinical outcome in acute myocardial infarction (AMI) patients, this study provides compelling evidence towards the translational potential of HEX where all others have largely failed.
    View less >
    Journal Title
    Biomedicine and Pharmacotherapy
    Volume
    127
    DOI
    https://doi.org/10.1016/j.biopha.2020.110165
    Copyright Statement
    © 2020 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Pharmacology and pharmaceutical sciences
    Autonomic nervous system
    Growth hormone secretagogoue
    Inflammation
    Myocardial ischemia-reperfusion
    Remodelling
    Publication URI
    http://hdl.handle.net/10072/394149
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander