• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Fabrication of biocompatible and bioabsorbable polycaprolactone/ magnesium hydroxide 3D printed scaffolds: Degradation and in vitro osteoblasts interactions

    Author(s)
    Abdal-hay, A
    Raveendran, NT
    Fournier, B
    Ivanovski, S
    Griffith University Author(s)
    Ivanovski, Saso
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Biodegradable polymeric 3D implants are of considerable interest for biomedical applications, however the degradation profile and bioactivity are important considerations for many clinical applications. In this context, bioresorbable magnesium hydroxide (MH) nanoparticles (NPs) (<50 nm) were blended with the degradable polymer poly (ε-caprolactone) (PCL) at concentrations of 5 and 20 wt%, and the composite was manufactured by 3D printing technology. Efficient load transfer was found between the nanofiller and matrix PCL, which was reflected in changes in the tensile properties of the MH-based composite. A statistically ...
    View more >
    Biodegradable polymeric 3D implants are of considerable interest for biomedical applications, however the degradation profile and bioactivity are important considerations for many clinical applications. In this context, bioresorbable magnesium hydroxide (MH) nanoparticles (NPs) (<50 nm) were blended with the degradable polymer poly (ε-caprolactone) (PCL) at concentrations of 5 and 20 wt%, and the composite was manufactured by 3D printing technology. Efficient load transfer was found between the nanofiller and matrix PCL, which was reflected in changes in the tensile properties of the MH-based composite. A statistically significant 44.3% increase in tensile modulus was achieved by the addition of 5 wt% MH, which was in agreement with the Halpin-Tsai theoretical model. The incorporation of MH in the PCL scaffolds accelerated the weight loss of the scaffolds and decreased the molecular weight of PCL over a prolonged soaking period (150 days) in PBS solution (pH 7.37, 37 ± 0.5 °C). The PCL/MH composite scaffolds were shown to be non-cytotoxic in vitro, and ion diffusion into the cell culture media promoted osteoblast metabolic activity, attachment, and proliferation, as compared to PCL-only scaffolds. Moreover, osteoblastic activity, as assessed by the expression of alkaline phosphatase, was significantly higher on the composite PCL/MH scaffold after 14 and 21 days. In summary, the 3D PCL/MH composite scaffolds could enhance osteoblastic activity and demonstrated a moderately accelerated degradation profile, which are characteristics that can be considered favorable for bone regeneration applications.
    View less >
    Journal Title
    Composites Part B: Engineering
    Volume
    197
    DOI
    https://doi.org/10.1016/j.compositesb.2020.108158
    Subject
    Engineering
    Biomedical engineering
    Publication URI
    http://hdl.handle.net/10072/394504
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander